• 제목/요약/키워드: Multiple Robots

검색결과 276건 처리시간 0.025초

한국 학생의 로봇에 대한 태도: 국제비교 및 태도형성에 관하여 (Korean Students' Attitudes Towards Robots: Two Survey Studies)

  • 신나민;김상아
    • 로봇학회논문지
    • /
    • 제4권1호
    • /
    • pp.10-16
    • /
    • 2009
  • This paper is concerned with Korean students' attitudes towards robots, presenting two survey studies. The first study was concerned with a group of college students, taking the perspective of international comparison. Data were collected by administering an online survey, where 106 volunteer students had participated. In the survey, the Negative Attitude towards Robot Scale(NARS) was adopted to compare the Korean students' scores with those of multi-national groups (U.S.A, Germany, Netherland, Japan, Mexico, and China) who responded to the same scale in Bartneck et al.'s research. The analysis of the data reveals that Korean students tend to be more concerned about social impacts that robots might bring to future society and are very conscious about the uncertain influences of robots on human life. The second study investigated factors that may affect K-12 students' attitudes towards robots, with survey data garnered from 298 elementary, middle, and high school students. The data were analyzed by the method of multiple regression analysis to test the hypothesis that a student's gender, age, the extent of interest in robots, and the extent of experiences with robots may influence his or her attitude towards robots. The hypothesis was partially supported in that variables of a student's gender, age, and the extent of interest in robots were statistically significant with regard to the attitude variable. Given the results, this paper suggests three points of discussions to better understand Korean students' attitudes towards robots: social and cultural context, individual differences, and theory of mind.

  • PDF

Firefly Algorithm을 이용한 군집 이동 로봇의 경로 계획 (Path Planning of Swarm Mobile Robots Using Firefly Algorithm)

  • 김휴찬;김제석;지용관;박장현
    • 제어로봇시스템학회논문지
    • /
    • 제19권5호
    • /
    • pp.435-441
    • /
    • 2013
  • A swarm robot system consists of with multiple mobile robots, each of which is called an agent. Each agent interacts with others and cooperates for a given task and a given environment. For the swarm robotic system, the loss of the entire work capability by malfunction or damage to a single robot is relatively small and replacement and repair of the robot is less costly. So, it is suitable to perform more complex tasks. The essential component for a swarm robotic system is an inter-robot collaboration strategy for teamwork. Recently, the swarm intelligence theory is applied to robotic system domain as a new framework of collective robotic system design. In this paper, FA (Firefly Algorithm) which is based on firefly's reaction to the lights of other fireflies and their social behavior is employed to optimize the group behavior of multiple robots. The main application of the firefly algorithm is performed on path planning of swarm mobile robots and its effectiveness is verified by simulations under various conditions.

Seamless Routing and Cooperative Localization of Multiple Mobile Robots for Search and Rescue Application

  • Lee, Chang-Eun;Im, Hyun-Ja;Lim, Jeong-Min;Cho, Young-Jo;Sung, Tae-Kyung
    • ETRI Journal
    • /
    • 제37권2호
    • /
    • pp.262-272
    • /
    • 2015
  • In particular, for a practical mobile robot team to perform such a task as that of carrying out a search and rescue mission in a disaster area, the network connectivity and localization have to be guaranteed even in an environment where the network infrastructure is destroyed or a Global Positioning System is unavailable. This paper proposes the new collective intelligence network management architecture of multiple mobile robots supporting seamless network connectivity and cooperative localization. The proposed architecture includes a resource manager that makes the robots move around and not disconnect from the network link by considering the strength of the network signal and link quality. The location manager in the architecture supports localizing robots seamlessly by finding the relative locations of the robots as they move from a global outdoor environment to a local indoor position. The proposed schemes assuring network connectivity and localization were validated through numerical simulations and applied to a search and rescue robot team.

계층적 구조에 의한 다중이동로봇의 협동제어에 관한 연구 (A Study on the Cooperative Control of Multiple Mobile Robots Using a Hierarchical Structure)

  • 박성규;이기성
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 합동 추계학술대회 논문집 정보 및 제어부문
    • /
    • pp.95-98
    • /
    • 2001
  • A hierarchical structure for the cooperative control of multiple mobile robots using coordinates of objects obtained from vision system is proposed. The order-level perceives environments represented by workspace sets. The algorithm selects an object to be moved using an object discrimination part and determines the robot actions. The action-level generates a trajectory of each wheel velocity of robot. The simulation results show the effectiveness of the proposed algorithm.

  • PDF

Pattern Analyses for Semi-Looper Type Robots with Multiple Links

  • Watanabe, Keigo;Liu, Guang Lei;Izumi, Kiyotaka
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.963-968
    • /
    • 2005
  • For worm robots applied to pipe inspection and colonoscopy, earthworm-like robots that have a locomotion pattern in backward wave or green caterpillar-like robots that have a locomotion pattern in forward wave have been studied widely. Note however that a method using a single and fixed locomotion pattern is not desirable in the sense of mobility cost, if there are various changes in pipe diameter. In this paper, locomotion patterns are considered for a semi-looper-like robot, which adopts a locomotion pattern of green caterpillars as the basic motion and sometimes can realize a locomotion pattern of looper, whose motion approximately consists of two rhythms or relatively low rhythm.

  • PDF

Generation of Fuzzy Rules for Cooperative Behavior of Autonomous Mobile Robots

  • Kim, Jang-Hyun;Kong, Seong-Gon
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 The Third Asian Fuzzy Systems Symposium
    • /
    • pp.164-169
    • /
    • 1998
  • Complex "lifelike" behaviors are composed of local interactions of individuals under fundamental rules of artificial life. In this paper, fundamental rules for cooperative group behaviors, "flocking" and "arrangement", of multiple autonomous mobile robots are represented by a small number of fuzzy rules. Fuzzy rules in Sugeno type and their related paramenters are automatically generated from clustering input-output data obtained from the algorithms the group behaviors. Simulations demonstrate the fuzzy rules successfully realize group intelligence of mobile robots.

  • PDF

유전 프로그래밍을 이용한 미지의 환경에서 상호 협력하는 로봇 제어기의 설계 (Controller Design for Cooperative Robots in Unknown Environments using a Genetic Programming)

  • 정일권;이주장
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권9호
    • /
    • pp.1154-1160
    • /
    • 1999
  • A rule based controller is constructed for multiple robots accomplishing a given task in unknown environments by using genetic programming. The example task is playing a simplified soccer game, and the controller for robots that governs emergent cooperative behavior is successfully found using the proposed procedure A neural network controller constructed using the rule based controller is shown to be applicable in a more complex environment.

  • PDF

Centralized, Distributed, Hybrid Task Planning Framework for Multi-Robot System in Diverse Communication Status

  • Moon, Jiyoun
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제10권3호
    • /
    • pp.215-220
    • /
    • 2021
  • As the role of robots expands, flexible task planning methods are attracting attention from various domains. Many task planning frameworks are introduced to efficiently work in a wide range of areas. In order to work well in a broad region with multiple robots, various communication conditions should be controlled by task planning frameworks. However, few methods are proposed. In this paper, we propose mission planning methods according to the communication status of robots. The proposed method was verified through experiments assuming different communication states with a multi-robot system.

이동로봇 자율주행을 위한 행위모듈의 실행순서 조정기법 (Sequencing Strategy for Autonomous Mobile Robots in Real Environments)

  • 송인섭;박정민;오상록;조영조;박귀태
    • 제어로봇시스템학회논문지
    • /
    • 제5권3호
    • /
    • pp.297-305
    • /
    • 1999
  • Autonomous mobile robots are required to achieve multiple goals while responding quickly to the dynamic environments. An appropriate robot control architecture, which clearly and systematically defines the relationship among the inputs, the processing functions and the outputs, thus needs to be embedded in the robot controller. This paper proposes a kind of hybrid control architecture which combines the key features of the two well-known robot control architectures; hierarchical and behavioral- based. The overall control architecture consists of three layers, i.e. the highest planner, the middle plan executor, and the lowest monitor and behavior-based controller. In the planned situation, only one behavior module is chosen by the logical coordinator in the plan executor according to the way point bin. In the exceptional situation, the central controller in the plan executor issues an additional control command to reach the planned way point. Several simulations and experiments with autonomous mobile robot show that the proposed architecture enables the robot controller to achieve the multiple sequential goals even in dynamic and uncertain environments.

  • PDF

Smooth Formation Navigation of Multiple Mobile Robots for Avoiding Moving Obstacles

  • Chen Xin;Li Yangmin
    • International Journal of Control, Automation, and Systems
    • /
    • 제4권4호
    • /
    • pp.466-479
    • /
    • 2006
  • This paper addresses a formation navigation issue for a group of mobile robots passing through an environment with either static or moving obstacles meanwhile keeping a fixed formation shape. Based on Lyapunov function and graph theory, a NN formation control is proposed, which guarantees to maintain a formation if the formation pattern is $C^k,\;k\geq1$. In the process of navigation, the leader can generate a proper trajectory to lead formation and avoid moving obstacles according to the obtained information. An evolutionary computational technique using particle swarm optimization (PSO) is proposed for motion planning so that the formation is kept as $C^1$ function. The simulation results demonstrate that this algorithm is effective and the experimental studies validate the formation ability of the multiple mobile robots system.