• Title/Summary/Keyword: Multiple PCR

Search Result 413, Processing Time 0.042 seconds

Comparative Assessment of Diagnostic Performance of Cytochrome Oxidase Multiplex PCR and 18S rRNA Nested PCR

  • Kumari, Preeti;Sinha, Swati;Gahtori, Renuka;Quadiri, Afshana;Mahale, Paras;Savargaonkar, Deepali;Pande, Veena;Srivastava, Bina;Singh, Himmat;Anvikar, Anupkumar R
    • Parasites, Hosts and Diseases
    • /
    • v.60 no.4
    • /
    • pp.295-299
    • /
    • 2022
  • Malaria elimination and control require prompt and accurate diagnosis for treatment plan. Since microscopy and rapid diagnostic test (RDT) are not sensitive particularly for diagnosing low parasitemia, highly sensitive diagnostic tools are required for accurate treatment. Molecular diagnosis of malaria is commonly carried out by nested polymerase chain reaction (PCR) targeting 18S rRNA gene, while this technique involves long turnaround time and multiple steps leading to false positive results. To overcome these drawbacks, we compared highly sensitive cytochrome oxidase gene-based single-step multiplex reaction with 18S rRNA nested PCR. Cytochrome oxidase (cox) genes of P. falciparum (cox-III) and P. vivax (cox-I) were compared with 18S rRNA gene nested PCR and microscopy. Cox gene multiplex PCR was found to be highly specific and sensitive, enhancing the detection limit of mixed infections. Cox gene multiplex PCR showed a sensitivity of 100% and a specificity of 97%. This approach can be used as an alternative diagnostic method as it offers higher diagnostic performance and is amenable to high throughput scaling up for a larger sample size at low cost.

Preimplantation Genetic Diagnosis for Single Gene Disorders (단일 유전자 질환에 대한 착상전 유전진단)

  • Lee, Hyoung-Song;Kim, Min-Jee;Kang, Inn-Soo
    • Journal of Genetic Medicine
    • /
    • v.6 no.2
    • /
    • pp.131-145
    • /
    • 2009
  • Preimplantation genetic diagnosis (PGD) has become an assisted reproductive technique for couples who are at risk that enables them to have unaffected baby without facing the risk of pregnancy termination after invasive prenatal diagnosis. The molecular biology and technology for single-cell genetics has reached an extremely high level of accuracy, and has enabled the possibility of performing multiple diagnoses on one cell using whole genome amplification. These technological advances have contributed to the avoidance of misdiagnosis in PGD for single gene disorders. Polymerase chain reaction (PCR)-based PGD will lead to a significant increase in the number of disorders diagnosed and will find more widespread use, benefiting many more couples who are at risk of transmitting an inherited disease to their baby. In this review, we will focus on the molecular biological techniques that are currently in use in the most advanced centers for PGD for single gene disorders, including biopsy procedure, multiplex PCR and post-PCR diagnostic methods, and multiple displacement amplification (MDA) and the problems in the single cell genetic analysis.

  • PDF

Development and Evaluation of a Next-Generation Sequencing Panel for the Multiple Detection and Identification of Pathogens in Fermented Foods

  • Dong-Geun Park;Eun-Su Ha;Byungcheol Kang;Iseul Choi;Jeong-Eun Kwak;Jinho Choi;Jeongwoong Park;Woojung Lee;Seung Hwan Kim;Soon Han Kim;Ju-Hoon Lee
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.1
    • /
    • pp.83-95
    • /
    • 2023
  • These days, bacterial detection methods have some limitations in sensitivity, specificity, and multiple detection. To overcome these, novel detection and identification method is necessary to be developed. Recently, NGS panel method has been suggested to screen, detect, and even identify specific foodborne pathogens in one reaction. In this study, new NGS panel primer sets were developed to target 13 specific virulence factor genes from five types of pathogenic Escherichia coli, Listeria monocytogenes, and Salmonella enterica serovar Typhimurium, respectively. Evaluation of the primer sets using singleplex PCR, crosscheck PCR and multiplex PCR revealed high specificity and selectivity without interference of primers or genomic DNAs. Subsequent NGS panel analysis with six artificially contaminated food samples using those primer sets showed that all target genes were multi-detected in one reaction at 108-105 CFU of target strains. However, a few false-positive results were shown at 106-105 CFU. To validate this NGS panel analysis, three sets of qPCR analyses were independently performed with the same contaminated food samples, showing the similar specificity and selectivity for detection and identification. While this NGS panel still has some issues for detection and identification of specific foodborne pathogens, it has much more advantages, especially multiple detection and identification in one reaction, and it could be improved by further optimized NGS panel primer sets and even by application of a new real-time NGS sequencing technology. Therefore, this study suggests the efficiency and usability of NGS panel for rapid determination of origin strain in various foodborne outbreaks in one reaction.

Analyses of Dystrophin Gene and Sex Determination using PEP-PCR in Single Fetal Cells (단일 태아세포에서의 PEP-PCR을 이용한 성의 결정과 Dystrophin 유전자 분석)

  • Choi, Soo-Kyung;Kim, Jin-Woo;Cho, Eun-Hee;Park, So-Yeon;Ryu, Hyun-Mee;Kang, Inn-Soo
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.24 no.1
    • /
    • pp.51-56
    • /
    • 1997
  • Recently, through the development of the primer extension preamplification(PEP) method which amplifies the whole genome, simultaneous multiple DNA analysis has become possible. Whole genome from each single cell can be amplified using 15 base oligonucleotide random primer. The greatest advantage of PEP-PCR is the ability to investigate several loci simultaneously and confirm results by analysing multiple aliquots for each locus. This technique led to the development of preimplantation genetic disease diagnosis using blastomere from early embryo, sperm, polar body and oocyte. In this study, we applied PEP-PCR in 20 cases of single amniocyte and 20 cases of single chorionic villus cell for the clinical application of the prenatal and preimplantational genetic diagnosis. We analysed 7 gene loci simultaneously which are 46, 47 exons related to dystrophin gene, two VNTR (variable number tandem repeat) markers using 5'dysIII, 3'CA related to dystrophin gene and DYZ1, DYZ3, DYS14 regions on chromosome Y. In all the tests, 97.5% of PEP-PCR amplifications with single cells were successful. We obtained 38/40 (95%) accuracy in gender determination through chromosome analysis comparison. Therefore, these results have significant implications for a sperm or oocyte analysis and prenatal or preimplantational genetic diagnosis.

  • PDF

RFLP Analysis of cry1 and cry2 Genes of Bacillus thuringiensis Isolates from India

  • Patel, Ketan D.;Ingle, Sanjay S.
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.6
    • /
    • pp.729-735
    • /
    • 2012
  • The PCR-RFLP method has been useful for detection of known genes and identification of novel genes. In the present study, degenerate primers were designed from five groups of cry1 genes for PCR-RFLP analysis. Bacillus thuringiensis (Bt) isolates from different regions were evaluated for PCR amplification of various cry1 genes using newly designed primers and cry2 genes using reported primers. PCR analysis showed an abundance of cry1A genes and especially cry1Ac genes in isolates from all regions. RFLP analysis revealed the presence of multiple cry1A genes in isolates from central and southern regions. Unique digestion patterns of cry1A genes were observed in isolates from each region. Few of the isolates represented a digestion pattern of cry1A genes that did match to any of the known cry1A genes. RFLP analysis suggested an abundance of cry2Ab along with a novel cry2 gene in Bt isolates from different regions of India. Sequence analysis of the novel cry2 gene revealed 95% sequence identity to cry2Ab and cry2Ah genes. Phylogenetic analysis revealed that the novel cry2 gene could have diverged earlier than the other cry2 genes. Our results encourage finding of more diverse cry2 genes in Bt isolates. Rarefaction analysis was used to compare cry1A gene diversity in isolates from different soil types. It showed a higher degree of cry1A gene diversity in isolates from central region. In the present study, we propose the use of novel degenerate primers for cry1 genes and the PCR-RFLP method using a single enzyme to distinguish multiple cry1A and cry2 genes as well as identify novel genes.

Molecular differentiation of Russian wild ginseng using mitochondrial nad7 intron 3 region

  • Li, Guisheng;Cui, Yan;Wang, Hongtao;Kwon, Woo-Saeng;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • v.41 no.3
    • /
    • pp.326-329
    • /
    • 2017
  • Background: Cultivated ginseng is often introduced as a substitute and adulterant of Russian wild ginseng due to its lower cost or misidentification caused by similarity in appearance with wild ginseng. The aim of this study is to develop a simple and reliable method to differentiate Russian wild ginseng from cultivated ginseng. Methods: The mitochondrial NADH dehydrogenase subunit 7 (nad7) intron 3 regions of Russian wild ginseng and Chinese cultivated ginseng were analyzed. Based on the multiple sequence alignment result, a specific primer for Russian wild ginseng was designed by introducing additional mismatch and allele-specific polymerase chain reaction (PCR) was performed for identification of wild ginseng. Real-time allele-specific PCR with endpoint analysis was used for validation of the developed Russian wild ginseng single nucleotide polymorphism (SNP) marker. Results: An SNP site specific to Russian wild ginseng was exploited by multiple alignments of mitochondrial nad7 intron 3 regions of different ginseng samples. With the SNP-based specific primer, Russian wild ginseng was successfully discriminated from Chinese and Korean cultivated ginseng samples by allele-specific PCR. The reliability and specificity of the SNP marker was validated by checking 20 individuals of Russian wild ginseng samples with real-time allele-specific PCR assay. Conclusion: An effective DNA method for molecular discrimination of Russian wild ginseng from Chinese and Korean cultivated ginseng was developed. The established real-time allele-specific PCR was simple and reliable, and the present method should be a crucial complement of chemical analysis for authentication of Russian wild ginseng.

Multiplex PCR for Detection of Quinolone Resistance qnr Genes in Extended-Spectrum β-Lactamase Producing Escherichia coli and Klebsiella pneumoniae (Multiplex PCR을 이용한 Extended-Spectrum β-Lactamase 생성 Escherichia coli와 Klebsiella pneumoniae의 Quinolone 내성 qnr유전자 검출)

  • Yang, Byoung-Seon
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.39 no.3
    • /
    • pp.161-166
    • /
    • 2007
  • To develop a rapid and reliable single-tube-based PCR technique for detection simultaneously the quinolone resistance qnrA, qnrB and qnrS genes. After multiple alignment, primers were designed to detect known qnr variants. I was used for A total of 43 extented-spectrum ${\beta}$-lactamases (ESBLs) producing Escherichia coli and Klebsiella pneumoniae isolated from university hospital were tested for screening, as with qnr genes. In optimized conditions, all positive controls confirmed the specificity of the PCR primers. Out of 43 isolates, qnrA genes were detected 19 (44.2%), qnrB genes 5 (11.7%), qnrS genes 15 (34.9%) and 8 (18.6%) isolates were not detected. I report here a fast and reliable technique for rapid screening of qnr positive strains to be used for epidemiological surveys.

  • PDF

PCR-Based Detection of Mycoplasma Species

  • Sung Hyeran;Kang Seung Hye;Bae Yoon Jin;Hong Jin Tae;Chung Youn Bok;Lee Chong-Kil;Song Sukgil
    • Journal of Microbiology
    • /
    • v.44 no.1
    • /
    • pp.42-49
    • /
    • 2006
  • In this study, we describe our newly-developed sensitive two-stage PCR procedure for the detection of 13 common mycoplasmal contaminants (M. arthritidis, M. bovis, M. fermentans, M. genitalium, M. hominis, M. hyorhinis, M. neurolyticum, M. orale, M. pirum, M. pneumoniae, M. pulmonis, M. salivarium, U. urealyticum). For primary amplification, the DNA regions encompassing the 16S and 23S rRNA genes of 13 species were targeted using general mycoplasma primers. The primary PCR products were then subjected to secondary nested PCR, using two different primer pair sets, designed via the multiple alignment of nucleotide sequences obtained from the 13 mycoplasmal species. The nested PCR, which generated DNA fragments of 165-353 bp, was found to be able to detect 1-2 copies of the target DNA, and evidenced no cross-reactivity with the generated DNA of related microorganisms or of human cell lines, thereby confirming the sensitivity and specificity of the primers used. The identification of contaminated species was' achieved via the performance of restriction fragment length polymorphism (RFLP) coupled with Sau3AI digestion. The results obtained in this study furnish evidence suggesting that the employed assay system constitutes an effective tool for the disagnosis of mycoplasmal contamination in cell culture systems.

Ultra-Rapid Real-Time PCR for the Detection of Human Immunodeficiency Virus (HIV) (Ultra Rapid Real-Time PCR에 의한 Human Immunodeficiency Virus (HIV)의 신속진단법)

  • Lee, Dong-Woo;Kim, Eul-Hwan;Yoo, Mi-Sun;Han, Sang-Hoon;Yoon, Byoung-Su
    • Korean Journal of Microbiology
    • /
    • v.43 no.2
    • /
    • pp.91-99
    • /
    • 2007
  • For the detection of Human Immunodeficiency Virus (HIV), multiple and ultra-rapid real-time PCR methods were developed. The target DNA sequences were deduced from HIV-1 specific 495bp partial env gene (gi_1184090) and from HIV-2 specific 294 bp partial env gene (gi_1332355), and were synthesized by using PCR-based gene synthesis on the reason of safety. Ultra-rapid real-time PCR was performed by $Genspector^{TM}$ using microchip-based, $1\;{\mu}l$ of reaction volume with extremely short time in each 3 step in PCR. The detection including DNA-amplification and melting temperature analysis was completed inner 15 minutes. The HIV-1 specific 117 bp-long and HIV-2 specific 119 bp-long PCR products were successfully amplified from minimum of template,2.3 molecules of each env gene. This kind of real-time PCR was designated as ultra-rapid real-time PCR in this study and it could be applied not only an alternative detection method against HIV, but also other pathogens using PCR-based detection.

Multiple Age-Associated Mitochondrial DNA Deletions in Mouse Brain

  • Kim, Jin-Sun;Kim, Min-Jung;Kwon, In-Sook;Song, Eun-Sook
    • BMB Reports
    • /
    • v.30 no.1
    • /
    • pp.33-36
    • /
    • 1997
  • Age-dependent deletion of mitochondrial DNA (mtDNA) was detected in mouse brain using PCR method. The size of the deleted fragment was 0.5 kb, 0.9 kb. 1.7 kb and 4.3 kb in the region between cytochrome b gene and ATPase 6 gene. The deleted fragment was increased gradually from 3-month to 22month Direct repeat sequence flanking the deletion in 0.5 kb PCR product was TAAT.

  • PDF