• Title/Summary/Keyword: Multiple Model Filter

Search Result 200, Processing Time 0.029 seconds

Linear Robust Target Tracking Filter Using the Range Differences Measured By Formation Flying Multiple UAVs (다중 UAV에서 측정된 거리차 정보를 이용한 선형 강인 표적추적 필터 설계)

  • Lee, Hye-Kyung;Han, Seul-Ki;Ra, Won-Sang
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.2
    • /
    • pp.284-290
    • /
    • 2012
  • This paper addresses a new passive target tracking problem using the range differences measured by cooperative UAVs. In order to solve the range difference based passive target tracking problem within the framework of linear robust state estimation, the uncertain linear measurement model which contains the stochastic parameter uncertainty is derived by using the noisy range difference measurements. To cope with the performance degradation due to the stochastic parameter uncertainty, the recently developed non-conservative robust Kalman filtering technique [1] is applied. For the cruciform formation flying UAVs, the relationship between the target tracking performance and the measurement errors is quantitatively analyzed. The proposed filter has practical advantages over the classical nonlinear filters because, for its recursive linear structure, it can provide satisfactory convergence properties and is suitable for real-time multiple UAVs applications. Through the simulations, the usefulness of the proposed method is demonstrated.

Fusion of Local and Global Detectors for PHD Filter-Based Multi-Object Tracking (검출기 융합에 기반을 둔 확률가정밀도 (PHD) 필터를 적용한 다중 객체 추적 방법)

  • Yoon, Ju Hong;Hwang, Youngbae;Choi, Byeongho;Yoon, Kuk-Jin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.9
    • /
    • pp.773-777
    • /
    • 2016
  • In this paper, a novel multi-object tracking method to track an unknown number of objects is proposed. To handle multiple object states and uncertain observations efficiently, a probability hypothesis density (PHD) filter is adopted and modified. The PHD filter is capable of reducing false positives, managing object appearances and disappearances, and estimating the multiple object trajectories in a unified framework. Although the PHD filter is robust in cluttered environments, it is vulnerable to false negatives. For this reason, we propose to exploit local observations in an RFS of the observation model. Each local observation is generated by using an online trained object detector. The main purpose of the local observation is to deal with false negatives in the PHD filtering procedure. The experimental results demonstrated that the proposed method robustly tracked multiple objects under practical situations.

Interacting Multiple Model Baro-Error Identification Filter (IMM 기법을 이용한 기압고도계 오차 식별 필터)

  • Whang, Ick-Ho;Ra, Won-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.290-291
    • /
    • 2007
  • Barometers can provide height information steady but its accuracy becomes poor as the air data varies due to the vehicles's moving or time's elapsing. In order to keep the accuracy in spite of the air data changes, we propose a filter for the identification of baro-errors. The baro-errors mainly consist of bias and scale factor errors which gradually varies as the air data varies. With GPS height measurements, the scale factor and bias estimator is designed by applying the interacting multiple model (IMM) filtering technique to the baro-error random walk model. The resultant estimates are used to compensate current baro-measurement to supply accurate measurements steadily.

  • PDF

Multi-Vehicle Tracking Adaptive Cruise Control (다차량 추종 적응순항제어)

  • Moon Il ki;Yi Kyongsu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.1 s.232
    • /
    • pp.139-144
    • /
    • 2005
  • A vehicle cruise control algorithm using an Interacting Multiple Model (IMM)-based Multi-Target Tracking (MTT) method has been presented in this paper. The vehicle cruise control algorithm consists of three parts; track estimator using IMM-Probabilistic Data Association Filter (PDAF), a primary target vehicle determination algorithm and a single-target adaptive cruise control algorithm. Three motion models; uniform motion, lane-change motion and acceleration motion. have been adopted to distinguish large lateral motions from longitudinal motions. The models have been validated using simulated and experimental data. The improvement in the state estimation performance when using three models is verified in target tracking simulations. The performance and safety benefits of a multi-model-based MTT-ACC system is investigated via simulations using real driving radar sensor data. These simulations show system response that is more realistic and reflective of actual human driving behavior.

Robust Airspeed Estimation of an Unpowered Gliding Vehicle by Using Multiple Model Kalman Filters (다중모델 칼만 필터를 이용한 무추력 비행체의 대기속도 추정)

  • Jin, Jae-Hyun;Park, Jung-Woo;Kim, Bu-Min;Kim, Byoung-Soo;Lee, Eun-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.8
    • /
    • pp.859-866
    • /
    • 2009
  • The article discusses an issue of estimating the airspeed of an autonomous flying vehicle. Airspeed is the difference between ground speed and wind speed. It is desirable to know any two among the three speeds for navigation, guidance and control of an autonomous vehicle. For example, ground speed and position are used to guide a vehicle to a target point and wind speed and airspeed are used to maximize flight performance such as a gliding range. However, the target vehicle has not an airspeed sensor but a ground speed sensor (GPS/INS). So airspeed or wind speed has to be estimated. Here, airspeed is to be estimated. A vehicle's dynamics and its dynamic parameters are used to estimate airspeed with attitude and angular speed measurements. Kalman filter is used for the estimation. There are also two major sources arousing a robust estimation problem; wind speed and altitude. Wind speed and direction depend on weather conditions. Altitude changes as a vehicle glides down to the ground. For one reference altitude, multiple model Kalman filters are pre-designed based on several reference airspeeds. We call this group of filters as a cluster. Filters of a cluster are activated simultaneously and probabilities are calculated for each filter. The probability indicates how much a filter matches with measurements. The final airspeed estimate is calculated by summing all estimates multiplied by probabilities. As a vehicle glides down to the ground, other clusters that have been designed based on other reference altitudes are activated. Some numerical simulations verify that the proposed method is effective to estimate airspeed.

Detection and Classification of Open-phase Faults in PMSM Using Extended Kalman Filter and Multiple Model (확장칼만필터 및 다중모델 기반 영구자석 동기전동기 권선 개방 고장의 검출 및 분류)

  • Minwoo Kim;Junhyeong Park;Sangho Ko
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.6
    • /
    • pp.100-107
    • /
    • 2023
  • Open-phase fault in a Permanent Magnet Synchronous Motor (PMSM) occurs due to disconnection of phases of motor windings or inverter switch failures. When an open-phase occurs, it leads to the generation of torque ripples and vibrations in the motor, which can have a critical impact on the safety of the vehicle (including aircraft) using a PMSM as an actuator. Therefore, rapid fault detection and classification are essential. This paper proposes a classification method for detecting open-phase faults and locating fault positions in a PMSM used in aircraft applications. The proposed approach uses an Extended Kalman Filter for fault diagnosis, and it subsequently classifies faults using a Multiple Model filter.

Target Tracking using Interacting Multilple Model Algorithm (상호작용 다중 모델 알고리듬을 이용한 표적 추적)

  • Ku, Hyun-Cherl;Seo, Jin-Heon
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.943-945
    • /
    • 1996
  • In this paper, we present an algorithm that allows tracking of a target using measurements obtained from a sensor with limited resolution. The Interacting Multiple Model (IMM) algorithm has been shown to be one of the most cost-effective estimation schemes for hybrid systems. The approach consists of IMM algorithm combined with a coupled version of the Joint Probabilistic Data Association Filter for the target that splits into two targets.

  • PDF

IMM Method Using Intelligent Input Estimation for Maneuvering Target Tracking

  • Lee, Bum-Jik;Joo, Young-Hoon;Park, Jin-Bae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1278-1282
    • /
    • 2003
  • A new interacting multiple model (IMM) method using intelligent input estimation (IIE) is proposed to track a maneuvering target. In the proposed method, the acceleration level for each sub-model is determined by IIE-the estimation of the unknown acceleration input by a fuzzy system using the relation between maneuvering filter residual and non-maneuvering one. The genetic algorithm (GA) is utilized to optimize a fuzzy system for a sub-model within a fixed range of acceleration input. Then, multiple models are composed of these fuzzy systems, which are optimized for different ranges of acceleration input. In computer simulation for an incoming ballistic missile, the tracking performance of the proposed method is compared with those of the input estimation (IE) technique and the adaptive interacting multiple model (AIMM) method.

  • PDF

Iterative Channel Estimation for MIMO-OFDM System in Fast Time-Varying Channels

  • Yang, Lihua;Yang, Longxiang;Liang, Yan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.9
    • /
    • pp.4240-4258
    • /
    • 2016
  • A practical iterative channel estimation technique is proposed for the multiple-input-multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) system in the high-speed mobile environment, such as high speed railway scenario. In the iterative algorithm, the Kalman filter and data detection are jointed to estimate the time-varying channel, where the detection error is considered as part of the noise in the Kalman recursion in each iteration to reduce the effect of the detection error propagation. Moreover, the employed Kalman filter is from the canonical state space model, which does not include the parameters of the autoregressive (AR) model, so the proposed method does not need to estimate the parameters of AR model, whose accuracy affects the convergence speed. Simulation results show that the proposed method is robust to the fast time-varying channel, and it can obtain more gains compared with the available methods.

Target Models in Multi-target Tracking System (다중표적 추적시스템에서의 표적물의 모델)

  • Lee, Yeon-Seok
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.7
    • /
    • pp.34-42
    • /
    • 1999
  • Multi-target tracking system is defined as tracking several targets simultaneously. Kalman filter is widely used for target tracking problems. Kalman filter is known to be extremely useful as an optimal estimator but has a shortcoming of computational complexity. So a simplified estimator model which had less computational burden is proposed for a real-time implementation of multi-target tracking systems. In this paper, Kalman filter is applied to implement a real-time tracking system with a simplified target model. The proposed Kalman filter model is simpler compared with those of conventional ones, greatly reducing computation time, yet keeping the tracking abilities of the optimal Kalman filter. Through both simulations and experiments with real environments, it is demonstrated that the proposed simplified model works good in real situation with multiple to be tracked.

  • PDF