• Title/Summary/Keyword: Multiple Mobile Robots

Search Result 132, Processing Time 0.025 seconds

Leader-Following Based Adaptive Formation Control for Multiple Mobile Robots (다개체 이동 로봇을 위한 선도-추종 접근법 기반 적응 군집 제어)

  • Park, Bong-Seok;Park, Jin-Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.5
    • /
    • pp.428-432
    • /
    • 2010
  • In this paper, an adaptive formation control based on the leader-following approach is proposed for multiple mobile robots with time varying parameters. The proposed controller does not require the velocity information of the leader robot, which is commonly assumed that it is either measured or telecommunicated. In order to estimate time varying velocities of the leader robot, the smooth projection algorithm is employed. From the Lyapunov stability theory, it is proved that the proposed control scheme can guarantee the uniform ultimate boundedness of error signals of the closed-loop system. Finally, the computer simulations are performed to demonstrate the performance of the proposed control system.

Implementation of the Arrangement Algorithm for Autonomous Mobile Robots (자율 이동 로봇의 정렬 군지능 알고리즘 구현)

  • Kim, Jang-Hyun;Kong, Seong-Gon
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2186-2188
    • /
    • 1998
  • In this paper, Fundamental rules governing group intelligence "arrangement" behavior of multiple number of autonomous mobile robots are represented by a small number of fuzzy rules. Complex lifelike behavior is considered as local interactions between simple individuals under small number of fundamental rules. The fuzzy rules for arrangement are generated from clustering the input-output data obtained from the arrangement algorithm. Simulation shows the fuzzy rules successfully realizes fundamental rules of the flocking group behavior.

  • PDF

Implementation of the Obstacle Avoidance Algorithm of Autonomous Mobile Robots by Clustering (클러스터링에 의한 자율 이동 로봇의 장애물 회피 알고리즘)

  • 김장현;공성곤
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.504-510
    • /
    • 1998
  • In this paper, Fundamental rules governing group intelligence "obstacle avoidance" behavior of multiple autonomous mobile robots are represented by a small number of fuzzy rules. Complex lifelike behavior is considered as local interactions between simple individuals under small number of fundamental rules. The fuzzy rules for obstacle avoidance are generated from clustering the input-output data obtained from the obstacle avoidance algorithm. Simulation shows the fuzzy rules successfully realizes fundamental rules of the obstacle avoidance behavior.

  • PDF

Navigation of Autonomous Mobile Robot with Intelligent Controller (지능제어기를 이용한 자율 이동로봇의 운항)

  • Choi, Jeong-Won;Kim, Yeon-Tae;Lee, Suk-Gyu
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.2
    • /
    • pp.180-185
    • /
    • 2003
  • This paper proposes an intelligent navigation algorithm for multiple mobile robots under unknown dynamic environment. The proposed algorithm consists of three basic parts as follows. The first part based on the fuzzy rule generates the turning angle and moving distance of the robot for goal approach without obstacles. In the second part, using both fuzzy and neural network, the angle and distance of the robot to avoid collision with dynamic and static obstacles are obtained. The final adjustment of the weighting factor based on fuzzy rule for moving and avoiding distance of the robots is provided in the third stage. The experiments which demonstrate the performance of the proposed intelligent controller is described.

Graph-based Segmentation for Scene Understanding of an Autonomous Vehicle in Urban Environments (무인 자동차의 주변 환경 인식을 위한 도시 환경에서의 그래프 기반 물체 분할 방법)

  • Seo, Bo Gil;Choe, Yungeun;Roh, Hyun Chul;Chung, Myung Jin
    • The Journal of Korea Robotics Society
    • /
    • v.9 no.1
    • /
    • pp.1-10
    • /
    • 2014
  • In recent years, the research of 3D mapping technique in urban environments obtained by mobile robots equipped with multiple sensors for recognizing the robot's surroundings is being studied actively. However, the map generated by simple integration of multiple sensors data only gives spatial information to robots. To get a semantic knowledge to help an autonomous mobile robot from the map, the robot has to convert low-level map representations to higher-level ones containing semantic knowledge of a scene. Given a 3D point cloud of an urban scene, this research proposes a method to recognize the objects effectively using 3D graph model for autonomous mobile robots. The proposed method is decomposed into three steps: sequential range data acquisition, normal vector estimation and incremental graph-based segmentation. This method guarantees the both real-time performance and accuracy of recognizing the objects in real urban environments. Also, it can provide plentiful data for classifying the objects. To evaluate a performance of proposed method, computation time and recognition rate of objects are analyzed. Experimental results show that the proposed method has efficiently in understanding the semantic knowledge of an urban environment.

An Efficient Outdoor Localization Method Using Multi-Sensor Fusion for Car-Like Robots (다중 센서 융합을 사용한 자동차형 로봇의 효율적인 실외 지역 위치 추정 방법)

  • Bae, Sang-Hoon;Kim, Byung-Kook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.10
    • /
    • pp.995-1005
    • /
    • 2011
  • An efficient outdoor local localization method is suggested using multi-sensor fusion with MU-EKF (Multi-Update Extended Kalman Filter) for car-like mobile robots. In outdoor environments, where mobile robots are used for explorations or military services, accurate localization with multiple sensors is indispensable. In this paper, multi-sensor fusion outdoor local localization algorithm is proposed, which fuses sensor data from LRF (Laser Range Finder), Encoder, and GPS. First, encoder data is used for the prediction stage of MU-EKF. Then the LRF data obtained by scanning the environment is used to extract objects, and estimates the robot position and orientation by mapping with map objects, as the first update stage of MU-EKF. This estimation is finally fused with GPS as the second update stage of MU-EKF. This MU-EKF algorithm can also fuse more than three sensor data efficiently even with different sensor data sampling periods, and ensures high accuracy in localization. The validity of the proposed algorithm is revealed via experiments.

Cooperative Particle Swarm Optimization-based Model Predictive Control for Multi-Robot Formation (군집 로봇 편대 제어를 위한 협력 입자 군집 최적화 알고리즘 기반 모델 예측 제어 기법)

  • Lee, Seung-Mok;Kim, Hanguen;Myung, Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.5
    • /
    • pp.429-434
    • /
    • 2013
  • This paper proposes a CPSO (Cooperative Particle Swarm Optimization)-based MPC (Model Predictive Control) scheme to deal with formation control problem of multiple nonholonomic mobile robots. In a distributed MPC framework, each robot needs to optimize control input sequence over a finite prediction horizon considering control inputs of the other robots where their cost functions are coupled by the state variables of the neighboring robots. In order to optimize the control input sequence, a CPSO algorithm is adopted and modified to fit into the formation control problem. Experiments are performed on a group of nonholonomic mobile robots to demonstrate the effectiveness of the proposed CPSO-based MPC for multi-robot formation.

Comparison of Extended Kalman Filter and Constraint Propagation Technique to Localize Multiple Mobile Robots (다중 이동 로봇의 위치 추정을 위한 확장 칼만 필터와 제약 만족 기법의 성능 비교)

  • Jo, Kyaung-Hwan;Lee, Hang-Ki;Lee, Ji-Hong
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.323-324
    • /
    • 2008
  • In this paper, we present performance comparison of two methods to localize multiple robots. One is extended Kalman filter and the other is constraint propagation technique. Extended Kalman filter is conventional probabilistic method which gives the sub-optimal estimation rather than guarantee any boundary for true position of robot. In case of constraint propagation, it can give a boundary containing true robot position value. Especially, we deal with cooperative localization problem in outdoor environment for multiple robots equipped with GPS, gyro meter, wheel encoder. In simulation results, we present strength and weakness for localization methods based on extend Kalman filter and constraint propagation technique.

  • PDF

Mobile Robots for the Concrete Crack Search and Sealing (콘크리트 크랙 탐색 및 실링을 위한 다수의 자율주행로봇)

  • Jin, Sung-Hun;Cho, Cheol-Joo;Lim, Kye-Young
    • The Journal of Korea Robotics Society
    • /
    • v.11 no.2
    • /
    • pp.60-72
    • /
    • 2016
  • This study proposes a multi-robot system, using multiple autonomous robots, to explore concrete structures and assist in their maintenance by sealing any cracks present in the structure. The proposed system employed a new self-localization method that is essential for autonomous robots, along with a visualization system to recognize the external environment and to detect and explore cracks efficiently. Moreover, more efficient crack search in an unknown environment became possible by arranging the robots into search areas divided depending on the surrounding situations. Operations with increased efficiency were also realized by overcoming the disadvantages of the infeasible logical behavioral model design with only six basic behavioral strategies based on distributed control-one of the methods to control swarm robots. Finally, this study investigated the efficiency of the proposed multi-robot system via basic sensor testing and simulation.