• 제목/요약/키워드: Multiple Cyclic Test

검색결과 35건 처리시간 0.025초

Constitutive Model of Tendon Responses to Multiple Cyclic Demands(I) -Experimental Analysis-

  • Chun, Keyoung-Jin;Robert P. Hubbard
    • Journal of Mechanical Science and Technology
    • /
    • 제15권7호
    • /
    • pp.1002-1012
    • /
    • 2001
  • The work reported here is an extensive study of tendon response to multiple cyclic tests including 3% constant peak strain level test (A-type test), 3% constant peak strain level test with two rest periods (B-type test), and 3∼4% different peak strain level test (C-type test). A sufficient number of specimens were tested at each type of the test to statistically evaluate many changes in response during testing and differences in response between each type of the test. In cyclic tests, there were decreses (relaxations) in the peak stresses and hysteresis, increases in the slack strains, and during lower peak strain level (3%) cyclic block after higher peak strain level (4%) cyclic block in the C-type tests. Considering the results of this study and those of the other study of multiple cyclic tests with rest periods by Hubbard and Chun, 1985, recovery phenomena during the rest periods occurred predominantly at the beginning of the rest periods. Consistently in both studies, the effects of rest periods were small and transient compared to the effects of the cyclic extensions. The recovery with cycles at lower peak strain level (3%) after higher peak strain level (4%) in the C-type test has not been previously documented. This recovery seems to be a natural phenomena in tissue behavior so that collagenous structures recover during periods of decreased demand.

  • PDF

반복 평판재하시험을 통한 지오그리드 보강지반의 거동 특성 (Behavior of Geogrid-Reinforced Soil with Cyclic plate Load Test)

  • 신은철;김두환;이상조;이규진
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1999년도 가을 학술발표회 논문집
    • /
    • pp.285-292
    • /
    • 1999
  • The cyclic plate load test were peformed to determine the behavior of reinforced soft ground with multiple layers of geogrid. Five series of test were conducted with varying the soil profile conditions which including the ground level, type of soil, and the thickness of each soil layer. The plate load test equipment was slightly modified to apply the cyclic load. Based on the cyclic plate load test results, the bearing capacity ratio(BCR), subbase modules, shear modules, the elastic rebound ratio, and reinforcing parameters are presented.

  • PDF

지오그리드로 보강한 고속철도 노반의 거동 특성 (Behavior of High-Speed Rail Roadbed Reinforced by Geogrid under Cyclic Loading)

  • 신은철;김두환
    • 한국철도학회논문집
    • /
    • 제3권2호
    • /
    • pp.84-91
    • /
    • 2000
  • The general concept of reinforced roadbed in the high-speed railway is to cope with the soft ground for the bearing capacity and settlement of foundation soil. The cyclic plate load tests were performed to determine the behavior of reinforced ground with multiple layers of geogrid underlying by soft soil. With the test results, the bearing capacity ratio, elastic rebound ratio, subgrade modulus and the strain of geogrids under loading were investigated. Based on these plate load tests, laboratory model tests under cyclic loading were conducted to estimate the effect of geogrid reinforcement in particular for the high-speed rail roadbed. The permanent settlement and the behavior of earth pressure in reinforced roadbed subjected to a combination of static and dynamic loading are presented.

  • PDF

Cyclic and static behaviors of CFT modular bridge pier with enhanced bracings

  • Kim, Dongwook;Jeon, Chiho;Shim, Changsu
    • Steel and Composite Structures
    • /
    • 제20권6호
    • /
    • pp.1221-1236
    • /
    • 2016
  • Modular structures consist of standardized modules and their connections. A modular bridge pier is proposed to accelerate bridge construction. Multiple concrete-filled steel tubes (CFTs) using commercial steel tubes were chosen as the main members. Buckling restrained bracings and enhanced connection details were designed to prevent premature low-cycle fatigue failure upon cyclic loading. The pier had a height of 7.95 m, widths of 2.5 m and 2.0 m along the strong and weak axis, respectively. Cyclic tests were performed on the modular pier to investigate structural performance. Test results showed that four CFT columns reached yielding without a premature failure of the bracing connections. The ultimate capacity of the modular pier was reasonably estimated based on the plastic-hinge-analysis concept. The modular CFT pier with enhanced bracing showed improved displacement ductility without premature failure at the welding joints.

Sectional Differences in Tendon Response

  • Chun, Keyoung-Jin;Robert P. Hubbard
    • Journal of Mechanical Science and Technology
    • /
    • 제17권8호
    • /
    • pp.1164-1170
    • /
    • 2003
  • The objectives of this work here focus on the differences in responses to multiple cyclic tests of different sections along the length of the same tendon. Tendon specimens were obtained from the hindlimbs of canines and frozen to -70$^{\circ}C$. After thawing, specimens were mounted in the immersion bath at room temperature (22$^{\circ}C$) , preloaded to 0.13 N and then subjected to 3% or 4% of the initial length at a strain rate of 5%/sec. It was found that different sections of the same long tendons had different resistances to deformation. In general, the bone end sections were stiffer and carried greater loads for a given strain than the muscle end sections, and the mid-portions were the least stiff and carried the smallest loads for a given strain. The results of this study offer new information about the mechanical responses of collagenous tissues. We know more about their responses to multiple cyclic extensions and how their responses are different from the positions along the length of the tendon specimen. The nature and causes of these differences in the stiffness are not fully known. However, it is clear that differences in the mechanical response of tendons and other connective tissues are significant to musculoskeletal performance.

Improvement of pavement foundation response with multi-layers of geocell reinforcement: Cyclic plate load test

  • Khalaj, Omid;Tafreshi, Seyed Naser Moghaddas;Mask, Bohuslav;Dawson, Andrew R.
    • Geomechanics and Engineering
    • /
    • 제9권3호
    • /
    • pp.373-395
    • /
    • 2015
  • Comprehensive results from cyclic plate loading at a diameter of 300 mm supported by layers of geocell are presented. The plate load tests were performed in a test pit measuring $2000{\times}2000mm$ in plane and 700 mm in depth. To simulate half and full traffic loadings, fifteen loading and unloading cycles were applied to the loading plate with amplitudes of 400 and 800 kPa. The optimum embedded depth of the first layer of geocell beneath the loading plate and the optimum vertical spacing of geocell layers, based on plate settlement, are both approximately 0.2 times loading plate diameter. The results show that installation of the geocell layers in the foundation bed, increase the resilient behavior in addition to reduction of accumulated plastic and total settlement of pavement system. Efficiency of geocell reinforcement was decreased by increasing the number of the geocell layers for all applied stress levels and number of cycles of applied loading. The results of the testing reveal the ability of the multiple layers of geocell reinforcement to 'shakedown' to a fully resilient behavior after a period of plastic settlement except when there is little or no reinforcement and the applied cyclic pressure are large. When shakedown response is observed, then both the accumulated plastic settlement prior to a steady-state response being obtained and the resilient settlements thereafter are reduced. The use of four layers of geocell respectively decreases the total and residual plastic settlements about 53% and 63% and increases the resilient settlement 145% compared with the unreinforced case. The inclusion of the geocell layers also reduces the vertical stress transferred down through the pavement by distributing the load over a wider area. For example, at the end of the load cycle of the applied pressure of 800 kPa, the transferred pressure at the depth of 510 mm is reduced about 21.4%, 43.9%, 56.1% for the reinforced bases with one, two, and three layers of geocell, respectively, compared to the stress in the unreinforced bed.

지오그리드로 보강한 고속철도 노반의 동적 거동 (The behavior of high-speed rail roadbed reinforced by geogrid under cyclic loading)

  • 신은철;김두환;김종인
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 1999년도 추계학술대회 논문집
    • /
    • pp.415-422
    • /
    • 1999
  • The general concept of reinforced roadbed in the high-speed railway is to cope with the soft ground for the bearing capacity and settlement of foundation soil. The cyclic plate load tests were performed to determine the behavior of reinforced ground with multiple layers of geogrid underlying by soft soil. Five series of test were conducted with varying the soil profile conditions including the ground level, type of soil, and the thickness of each soil layer. Based on these plate load tests, laboratory model tests under cyclic loading were conducted to know the effect of geogrid reinforcement in particular for the high-speed rail roadbed. The permanent settlement and the behavior of earth pressure in reinforced roadbed subjected to a combination of static and dynamic loading are presented.

  • PDF

Steel Cord와 PVA 혼합섬유 보강 고인성 시멘트 복합체의 인장강도 특성 (Tensile Strength Characteristics of Steel Cord and PVA Hybrid Fiber Reinforced Cement-Based Composites)

  • 윤현도;양일승;한병찬;복산양;전에스더;문연준
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.18-21
    • /
    • 2004
  • This paper discusses how steel cord and PVA hybrid fibers enhance the performance of high performance fiber reinforced cementitious composites (HPRFCC) in terms of elastic limit, strain hardening response and post peak of the composites. The effect of microfiber(PVA) blending ratio is presented. For this purpose flexure, direct tension and split tension tests were conducted. It was found that HFRCC specimen shows multiple cracking in the area subjected to the greatest bending tensile stress. Uniaxial tensile test confirms the range of tensile strain capacity from 0.5 to $1.5\%$ when hybrid fiber is used. The cyclic loading test results identified a unique unloading and reloading response for this ductile composite. Cyclic loading in tension appears not to affect the tensile response of the material if the uniaxial compressive strength during loading is not exceeded.

  • PDF

주기하중을 받는 세장한 이중강판합성벽의 비선형해석 (Nonlinear Analysis of Slender Double Skin Composite Walls Subjected to Cyclic Loading)

  • 엄태성;박홍근
    • 한국강구조학회 논문집
    • /
    • 제20권4호
    • /
    • pp.505-517
    • /
    • 2008
  • 휨지배 거동을 나타내는 세장한 이중강판합성벽의 비탄성 거동을 예측하기 위하여 비선형 수치해석 모델이 연구되었다. 수치해석의 편리를 위하여, 제안된 모델은 비교적 단순한 모델을 가지고 비탄성 거동을 근사적으로 예측할 수 있는 거시적 모델로 개발되었다. 휨지배 거동을 나타내는 벽체에 대해서는 다중평행요소 모델이 사용되었으며, 깊은 연결보의 전단거동을 위하여 X형 대각요소 모델이 사용되었다. 각 요소의 주기거동을 예측하기 위하여 콘크리트 및 강판 요소에 대한 간략화된 일축의 주기모델을 제안하였다. 제안된 해석모델은 1자형 및 T형 단일벽과 병렬벽에 적용하였으며, 그 결과는 기존의 실험결과와 비교되었다.

철근 보강된 ECC 기둥의 반복하중에 대한 이력거동 (Cyclic Responses of Steel Reinforced ECC Column under Reversed Cyclic Loading Conditions)

  • 현정환;심영흥;방진욱;김윤용
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제19권4호
    • /
    • pp.75-82
    • /
    • 2015
  • 이 논문에서는 철근으로 보강한 고인성 섬유복합체(ECC) 기둥의 반복이력거동을 연구하였다. ECC를 제조하기 위하여 1종 보통 포틀랜드 시멘트(OPC)를 기본 결합재로 하고, 플라이애시를 다량 치환하여 결합재와 충전재로 사용하는 배합을 적용하였다. 철근 보강한 ECC 기둥의 반복이력거동을 평가하기 위하여 일반 철근콘크리트 기둥 실험체를 제작하여 실험을 수행하였다. 반복하중에 의한 실험의 결과, 일반 철근콘크리트 기둥에 비하여 철근 보강한 ECC 기둥은 높은 연성비와 함께 안정적인 이력거동을 나타내었고, 우수한 휨 균열 제어 특성을 나타내었다. 또한 횡방향 하중에 대한 기둥의 내력 증진효과와 함께 에너지 소산능력의 향상을 나타내었다.