• Title/Summary/Keyword: Multiple Columns

Search Result 87, Processing Time 0.022 seconds

On successive machine learning process for predicting strength and displacement of rectangular reinforced concrete columns subjected to cyclic loading

  • Bu-seog Ju;Shinyoung Kwag;Sangwoo Lee
    • Computers and Concrete
    • /
    • v.32 no.5
    • /
    • pp.513-525
    • /
    • 2023
  • Recently, research on predicting the behavior of reinforced concrete (RC) columns using machine learning methods has been actively conducted. However, most studies have focused on predicting the ultimate strength of RC columns using a regression algorithm. Therefore, this study develops a successive machine learning process for predicting multiple nonlinear behaviors of rectangular RC columns. This process consists of three stages: single machine learning, bagging ensemble, and stacking ensemble. In the case of strength prediction, sufficient prediction accuracy is confirmed even in the first stage. In the case of displacement, although sufficient accuracy is not achieved in the first and second stages, the stacking ensemble model in the third stage performs better than the machine learning models in the first and second stages. In addition, the performance of the final prediction models is verified by comparing the backbone curves and hysteresis loops obtained from predicted outputs with actual experimental data.

Two-dimensional numerical investigation of the effects of multiple sequential earthquake excitations on ancient multi-drum columns

  • Papaloizou, Loizos;Polycarpou, Panayiotis;Komodromos, Petros;Hatzigeorgiou, George D.;Beskos, Dimitri E.
    • Earthquakes and Structures
    • /
    • v.10 no.3
    • /
    • pp.495-521
    • /
    • 2016
  • Ancient monuments of Greek and Roman classical architecture usually consist of multi-drum columns that are constructed of stone blocks placed on top of each other. Several research studies deal with the seismic behaviour of such structures, since earthquakes are common causes of destruction of such monuments. This paper investigates the effect of multiple earthquakes on the seismic performance of multi-drum columns, through numerical simulations and parametric analyses. The Discrete Element Method and an appropriate contact model have been implemented in a specially developed software application that is able to efficiently perform the necessary simulations in two dimensions. Specifically, various strong ground excitations are used in series for the computation of the collective final deformation of multi-drum columns. In order to calculate this cumulative deformation for a series of ground motions, the individual deformation of the column for each excitation is computed and then used as initial conditions for the next earthquake excitation. Various multi-drum columns with different dimensions are also considered in the analyses in order to examine how the geometric characteristics of columns can affect their seismic sequence behaviour, in combination with the excitation frequency content.

Investigation on the Design of SRC Composite Columns (SRC 합성교각의 설계에 대한 고찰)

  • Shim, Chang-Su;Chung, Young-Soo;Min, Jin;Jung, In-Keun;Han, Jung-Hoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.439-442
    • /
    • 2005
  • Steel encased composite columns are widely used due to their excellent structural performance in terms of stiffness, strength, and ductility. However, these columns were usually utilized for building structures and had higher steel ratio for small sections. For bridge pier applications, it is necessary to design the SRC columns having low steel ratio, which is nearly the same steel ratio as the normal RC columns. In this study, the evaluation of the composite columns with a core steel in term of the stiffness and the strength was investigated using experimental results. The effects of the steel ratio was also estimated using design provisions. The calculation of steel encased composite columns with multiple steel sections were performed and compared with RC columns.

  • PDF

Axial compressive behavior of special-shaped concrete filled tube mega column coupled with multiple cavities

  • Wu, Haipeng;Qiao, Qiyun;Cao, Wanlin;Dong, Hongying;Zhang, Jianwei
    • Steel and Composite Structures
    • /
    • v.23 no.6
    • /
    • pp.633-646
    • /
    • 2017
  • The compressive behavior of special-shaped concrete filled tube (CFT) mega column coupled with multiple cavities is studied by testing six columns subjected to cyclically uniaxial compressive load. The six columns include three pentagonal specimens and three hexagonal specimens. The influence of cavity construction, arrangement of reinforcement, concrete strength on failure feature, bearing capacity, stiffness, and residual deformation is examined. Experimental results show that cavity construction and reinforcements make it possible to form a combined confinement effect to in-filled concrete, and the two groups of special-shaped CFT columns show good elastic-plastic compressive behavior. As there is no axial bearing capacity calculation method currently available in any Code of practice for special-shaped CFT columns, values predicted by normal CFT column formulas in GB50936, CECS254, ACI-318, EC4, AISCI-LRFD, CECS159, and AIJ are compared with tested values. The calculated values are lower than the tested values for most columns, thus the predicted bearing capacity is safe. A reasonable calculation method by dividing concrete into active and inactive confined regions is proposed. And high accuracy shows in estimating special-shaped CFT columns either coupled with multiple cavities or not. In addition, a finite element method (FEM) analysis is conducted and the simulated results match the test well.

Effect of Longitudinal Reinforcement Ratios and Axial Deformation on Frame Analysis in RC Columns (기둥의 철근비와 축변형량이 보 해석에 미치는 영향 연구)

  • 장원석;민창식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.477-482
    • /
    • 2001
  • This paper is to study the effect of longitudinal reinforcement ratios and axial deformation on the frame analysis in reinforced concrete(RC) columns and to investigate the effect of confined concrete core, the length-width ratio and longitudinal steel ratios on frame analysis in Concrete-Filled steel Tubular(CFT) columns. An equation if derived to evaluate the modulus of elasticity for core concrete. The 34 reference data have been collected for the purpose and are processed by the mean of a multiple regression analysis technique. The equation and longitudinal reinforcement ratios was applied to RC columns for structural analysis. Then, the difference of beam moment was identified. In general, the results of analysis was indicated reasonable differences in beam moment, in case of longitudinal reinforcement ratios applied to RC columns when compared with the plain concrete columns. In CFT columns the equation was also applied in order to the effect of confined concrete core on structural analysis. Beam moment was increased as volumetric ratio of lateral steel was decreased. The effect of longitudinal steel ratios was investigated in CFT columns and was confirmed beam moment variety. The result was appeared reasonable difference in beam moment as longitudinal steel was increased.

  • PDF

Experimental research on seismic behavior of steel reinforced high-strength concrete short columns

  • Zhu, Weiqing;Jia, Jinqing;Zhang, Junguang
    • Steel and Composite Structures
    • /
    • v.25 no.5
    • /
    • pp.603-615
    • /
    • 2017
  • This experimental research presents the seismic performance of steel reinforced high-strength concrete (SRHC) short columns. Eleven SRHC column specimens were tested under simulated earthquake loading conditions, including six short column specimens and five normal column specimens. The parameters studied included the axial load level, stirrup details and shear span ratio. The failure modes, critical region length, energy dissipation capacity and deformation capacity, stiffness and strength degradation and shear displacement of SRHC short columns were analyzed in detail. The effects of the parameters on seismic performance were discussed. The test results showed that SRHC short columns exhibited shear-flexure failure characteristics. The critical region length of SRHC short columns could be taken as the whole column height, regardless of axial load level. In comparison to SRHC normal columns, SRHC short columns had weaker energy dissipation capacity and deformation capacity, and experienced faster stiffness degradation and strength degradation. The decrease in energy dissipation and deformation capacity due to the decreasing shear span ratio was more serious when the axial load level was higher. However, SRHC short columns confined by multiple stirrups might possess good seismic behavior with enough deformation capacity (ultimate drift ratio ${\geq}2.5%$), even though a relative large axial load ratio (= 0.38) and relative small structural steel ratio (= 3.58%) were used, and were suitable to be used in tall buildings in earthquake regions.

Finite Element Analysis of Inelastic Behavior of SRC Composite Piers (SRC 합성교각의 비탄성거동에 대한 유한요소해석)

  • Shim, Chang-Su;Han, Jung-Hoon;Park, Chang-Kyu;Chung, Young-Soo
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.269-275
    • /
    • 2006
  • In the design of bridge piers in seismic area, the ductility requirement is one of the most important design criteria. In order to enhance the seismic performance of RC columns, it is necessary to make the ductility of columns larger by covering RC columns with steel tubes or confining RC columns by arranging transverse reinforcement such as hoop ties closely. Concrete encased composite columns can be utilized for bridge piers especially in seismic area. In this paper, finite element analyses are performed to study the nonlinear behavior of concrete encased composite columns with single core steel or multiple steel elements under static and quasi-static loads. The cross-sections of these specimens ate composed of concrete-encased H-shaped structural steel columns and a concrete-encased circular tube with partial in-filled concrete. Test parameters were the amount of the transverse reinforcement, encased steel member, and loading axis. Through the comparison between FE analyses and test results, adequate material models for confined concrete and unconfined concrete ate investigated. After getting the proper analysis models for composite columns, several parameters are considered to suggest design considerations on the details of composite piers.

  • PDF

Seismic response estimation of steel buildings with deep columns and PMRF

  • Reyes-Salazar, Alfredo;Soto-Lopez, Manuel E.;Gaxiola-Camacho, Jose R.;Bojorquez, Eden;Lopez-Barraza, Arturo
    • Steel and Composite Structures
    • /
    • v.17 no.4
    • /
    • pp.471-495
    • /
    • 2014
  • The responses of steel buildings with perimeter moment resisting frames (PMRF) with medium size columns (W14) are estimated and compared with those of buildings with deep columns (W27), which are selected according to two criteria: equivalent resistance and equivalent weight. It is shown that buildings with W27 columns have no problems of lateral torsional, local or shear buckling in panel zone. Whether the response is larger for W14 or W27 columns, depends on the level of deformation, the response parameter and the structural modeling under consideration. Modeling buildings as two-dimensional structures result in an overestimation of the response. For multiple response parameters, the W14 columns produce larger responses for elastic behavior. The axial load on columns may be significantly larger for the buildings with W14 columns. The interstory displacements are always larger for W14 columns, particularly for equivalent weight and plane models, implying that using deep columns helps to reduce interstory displacements. This is particularly important for tall buildings where the design is usually controlled by the drift limit state. The interstory shears in interior gravity frames (GF) are significantly reduced when deep columns are used. This helps to counteract the no conservative effect that results in design practice, when lateral seismic loads are not considered in GF of steel buildings with PMRF. Thus, the behavior of steel buildings with deep columns, in general, may be superior to that of buildings with medium columns, using less weight and representing, therefore, a lower cost.

Quasi-Static Tests on SRC Composite Columns (SRC 합성교각의 준정적 실험)

  • Shim, Chang-Su;Chung, Young-Soo;Jung, In-Keun;Min, Jin;Han, Jung-Hun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.299-302
    • /
    • 2005
  • This study deals with the quasi-static tests on steel reinforced concrete composite columns with single embedded steel or multiple members. For the design of bridge piers, the composite section needs to have low steel ratio for cost savings because the dimension of the pier section is usually large. There is lack of design guidelines for these composite columns with low steel ratio, but the design provisions for the normal reinforced concrete column can be used for the design because of the low steel ratio. It is necessary to provide the design provisions in terms of the strength limit state and seismic performance by the detail requirements on the longitudinal steel and the transverse steel. The test parameters in this study were determined considering the current design provisions on RC columns. Through the quasi-static tests, the seismic performance of the composite columns were discussed.

  • PDF

Free Vibration of Compressed Laminated Composite Beam-Columns with Multiple Delaminations (압축하중을 받는 다층간분리 적층 복합 보-기둥의 자유진동)

  • 이성희;박대효;백재욱;한병기
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.501-508
    • /
    • 2001
  • Free vibration analysis of multi-delaminated composite beam-columns subjected to axial compression load is performed in the present study. In order to investigate the effects of multi-delaminations on the natural frequency and elastic buckling load of multi-delaminated beam-columns, the general kinematic continuity conditions are derived from the assumption of constant slope and curvature at the multi-delamination tip. Characteristic equation of multi-delaminated beam-column is obtained by dividing the global multi-delaminated beam-columns into segments and by imposing recurrence relation from the continuity conditions on each sub-beam-column. The natural frequency and elastic buckling load of multi-delaminated beam-columns according to the incremental load of axial compression, which is limited to the maximum elastic buckling load of sound laminated beam-column, are obtained. It is found that the sizes, locations and numbers of multi-delaminations have significant effect on natural frequency and elastic buckling load, especially the latter ones.

  • PDF