• Title/Summary/Keyword: Multiphysics coupling analysis

Search Result 12, Processing Time 0.023 seconds

Effect of two way thermal hydraulic-fuel performance coupling on multicycle depletion

  • Awais Zahur;Muhammad Rizwan Ali;Deokjung Lee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4431-4446
    • /
    • 2023
  • A Multiphysics coupling framework, MPCORE, has been developed to analyze safety parameters using the best estimate codes. The framework contains neutron kinetics (NK), thermal hydraulics (TH), and fuel performance (FP) codes to analyze fuel burnup, radial power distribution, and coolant temperature (Tbc). Shuffling and rotation capabilities have been verified on the Watts Bar reactor for three cycles. This study focuses on two coupling approaches for TH and FP modules. The one-way coupling approach involves coupling the FP code with the NK code, providing no data to the TH modules but getting Tbc as boundary condition from TH module. The two-way coupling approach exchanges information from FP to TH modules, so that the simplified heat conduction solver of the TH module is not used. The power profile in both approaches does not differ significantly, but there is an impact on coolant and cladding parameters. The one-way coupling approach tends to over-predict the cladding hydrogen concentration (CHC). This research highlights the difference between one-way and two-way coupling on critical boron concentration, Tbc, CHC, oxide surface temperature, and pellet centerline temperature. Overall, MPCORE framework with two-way coupling provides a more accurate and reliable analysis of safety parameters for nuclear reactors.

Analysis of Anisotropic Structures under Multiphysics Environment (멀티피직스 환경하의 이방성 구조물 해석)

  • Kim, Jun-Sik;Lee, Jae-Hun;Park, Jun-Young
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.6
    • /
    • pp.140-145
    • /
    • 2011
  • An anisotropic beam model is proposed by employing an asymptotic expansion method for thermo-mechanical multiphysics environment. An asymptotic method based on virtual work is introduced first, and then the variables of mechanical displacement and temperature rise are asymptotically expanded by taking advantage of geometrical slenderness of elastic bodies. Subsequently substituting these expansions into the virtual work principle allows us to asymptotically expand the virtual work. This will yield a set of recursive virtual works from which two-dimensional microscopic and one-dimensional macroscopic equations are systematically derived at each order. In this way, homogenized stiffnesses and thermomechanical coupling coefficients are derived. To demonstrate the validity and efficiency of the proposed approach, composite beams are taken as a test-bed example. The results obtained herein are compared to those of three-dimensional finite element analysis.

Testbed Design of PWM Controlled High Voltage Relay (PWM 제어용 고전압 릴레이의 테스트베드 설계)

  • Kim, Jin-Kwang
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.5
    • /
    • pp.419-424
    • /
    • 2017
  • The purpose of this study is to develop a virtual testbed capable of predicting the functional performance of a linear electromagnetic actuator for a high voltage relay in order to reduce its development costs and time. The virtual testbed is defined by a multiphysics coupling approach in order to consider the complex interactions of multi-domains such as the solenoid model of electromagnets, the mass-spring-damper model of mechanical systems, the electric circuit model for an external control unit, and the thermal model for predicting temperature variations. The performances of the existing high voltage relay were estimated by the virtual testbed, and then the effectiveness and validation of the proposed testbed were discussed in comparison with the experimental test results. This study showed that the virtual testbed can be applied in design, optimization, and investigation of high voltage relays.

Validation of Serpent-SUBCHANFLOW-TRANSURANUS pin-by-pin burnup calculations using experimental data from the Temelín II VVER-1000 reactor

  • Garcia, Manuel;Vocka, Radim;Tuominen, Riku;Gommlich, Andre;Leppanen, Jaakko;Valtavirta, Ville;Imke, Uwe;Ferraro, Diego;Uffelen, Paul Van;Milisdorfer, Lukas;Sanchez-Espinoza, Victor
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3133-3150
    • /
    • 2021
  • This work deals with the validation of a high-fidelity multiphysics system coupling the Serpent 2 Monte Carlo neutron transport code with SUBCHANFLOW, a subchannel thermalhydraulics code, and TRANSURANUS, a fuel-performance analysis code. The results for a full-core pin-by-pin burnup calculation for the ninth operating cycle of the Temelín II VVER-1000 plant, which starts from a fresh core, are presented and assessed using experimental data. A good agreement is found comparing the critical boron concentration and a set of pin-level neutron flux profiles against measurements. In addition, the calculated axial and radial power distributions match closely the values reported by the core monitoring system. To demonstrate the modeling capabilities of the three-code coupling, pin-level neutronic, thermalhydraulic and thermomechanic results are shown as well. These studies are encompassed in the final phase of the EU Horizon 2020 McSAFE project, during which the Serpent-SUBCHANFLOW-TRANSURANUS system was developed.

Analysis of Electromagnetic Forming Using Sequential Electromagnetic-Mechanical Coupled Simulations (순차적 전자기-구조 연성해석을 통한 전자기성형 공정 해석)

  • Kim, J.;Noh, H.G.;Ko, S.J.;Kim, T.J.
    • Transactions of Materials Processing
    • /
    • v.21 no.7
    • /
    • pp.441-446
    • /
    • 2012
  • A sequential coupled field analysis of electromagnetic free bulging was performed by using FEM. A 2D axi-symmetric electromagnetic model based on the magnetic vector potential is proposed for the calculation of magnetic field and Lorentz's forces. The Newmark integration method is used to calculate the transient dynamic plastic deformation of sheet during free bulging. In the finite element model, the effect of sheet deformation on the electromagnetic field analysis is taken into consideration. In order to confirm the sequential electromagnetic-mechanical coupling analysis, an experiment with an electromagnetic forming apparatus was conducted. The results showed that the final bulge height of the sheet predicted from the proposed method is in good agreement with experimentally measured height.

CTF/DYN3D multi-scale coupled simulation of a rod ejection transient on the NURESIM platform

  • Perin, Yann;Velkov, Kiril
    • Nuclear Engineering and Technology
    • /
    • v.49 no.6
    • /
    • pp.1339-1345
    • /
    • 2017
  • In the framework of the EU funded project NURESAFE, the subchannel code CTF and the neutronics code DYN3D were integrated and coupled on the NURESIM platform. The developments achieved during this 3-year project include assembly-level and pin-by-pin multiphysics thermal hydraulics/neutron kinetics coupling. In order to test this coupling, a PWR rod ejection transient was simulated on a MOX/UOX minicore. The transient is simulated using two different models of the minicore. In the first simulation, both codes model the core with an assembly-wise resolution. In the second simulation, a pin-by-pin fuel-centered model is used in CTF for the central assembly, and a pin power reconstruction method is applied in DYN3D. The analysis shows the influence of the different models on global parameters, such as the power and the average fuel temperature, but also on local parameters such as the maximum fuel temperature.

Numerical Study on a Diffused-mode Arc within a Vacuum Interrupter (진공차단부에서 발생하는 확산형 아크 수치해석)

  • Cho, S.H.;Hwang, J.H.;Lee, J.C.;Choi, M.J.;Kwon, J.R.;Kim, Y.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.479-482
    • /
    • 2008
  • In order to more closely examine the vacuum arc phenomena, it is necessary to predict the magnetohydrodynamic (MHD) characteristics by the multidisciplinary numerical modeling, which is coupled with the electromagnetic and hydrodynamic fields, simultaneously. In this study, the thermal-fluid characteristics of high current vacuum arcs were calculated by a commercial multiphysics package, ANSYS, in order to obtain Joule heat, Lorentz force and the interactions with flow variables. We assumed the diffused-mode arc within an AMF vacuum interrupter. It was found with four different currents that the temperature distributions on the anode surface are diffused uniformly without concentration in 7kA for both types (cup and coil-type). But the arc plasma transition and an increase of thermal flux density for increasing the applied current have caused the change of temperature distributions on the anode surface. We should need further studies on the two-way coupling method and radiation model for arc plasmas in order to accomplish the advanced analysis method for multiphysics.

  • PDF

Seismic performance evaluation of a three-dimensional unsymmetrical reinforced concrete building

  • Lim, Hyun-Kyu;Kang, Jun Won;Lee, Young-Geun;Chi, Ho-Seok
    • Multiscale and Multiphysics Mechanics
    • /
    • v.1 no.2
    • /
    • pp.143-156
    • /
    • 2016
  • Reinforced concrete (RC) structures require advanced analysis techniques for better estimation of their seismic responses, especially in the case of exhibiting complex three-dimensional coupling of torsional and flexural behaviors. This study focuses on validating a numerical approach for evaluating the seismic response of a three-dimensional unsymmetrical RC structure through the participation in the SMART 2013 international benchmark program. The benchmark program provides material properties, detailed drawings of the RC structure, and input ground motions for the seismic response evaluation. In this study, nonlinear constitutive models of concrete and rebar were formed and local tests were conducted to verify the constitutive models in finite element analysis. Elastic calibration of the finite element model of the SMART 2013 RC structure was performed by comparing numerical and experimental results in modal and linear time history analyses. Using the calibrated model, nonlinear earthquake analysis and seismic fragility analysis were performed to estimate the behavior and vulnerability of the RC structure with various ground motions.

Acoustic responses of natural fibre reinforced nanocomposite structure using multiphysics approach and experimental validation

  • Satankar, Rajesh Kumar;Sharma, Nitin;Ramteke, Prashik Malhari;Panda, Subtra Kumar;Mahapatra, Siba Shankar
    • Advances in nano research
    • /
    • v.9 no.4
    • /
    • pp.263-276
    • /
    • 2020
  • In this article, the acoustic responses of free vibrated natural fibre-reinforced polymer nanocomposite structure have been investigated first time with the help of commercial package (ANSYS) using the multiphysical modelling approach. The sound relevant data of the polymeric structure is obtained by varying weight fractions of the natural nanofibre within the composite. Firstly, the structural frequencies are obtained through a simulation model prepared in ANSYS and solved through the static structural analysis module. Further, the corresponding sound data within a certain range of frequencies are evaluated by modelling the medium through the boundary element steps with adequate coupling between structure and fluid via LMS Virtual Lab. The simulation model validity has been established by comparing the frequency and sound responses with published results. In addition, sets of experimentation are carried out for the eigenvalue and the sound pressure level for different weight fractions of natural fibre and compared with own simulation data. The experimental frequencies are obtained using own impact type vibration analyzer and recorded through LABVIEW support software. Similarly, the noise data due to the harmonically excited vibrating plate are recorded through the available Array microphone (40 PH and serial no: 190569). The numerical results and subsequent experimental comparison are indicating the comprehensiveness of the presently derived simulation model. Finally, the effects of structural design parameters (thickness ratio, aspect ratio and boundary conditions) on the acoustic behaviour of the natural-fibre reinforced nanocomposite are computed using the present multiphysical model and highlighted the inferences.

Multiphysics analysis of Hydrodynamics and Electrodeposition for Rotating Disk Electrode and Rotating Cylinder Hull Cell (회전원판전극(RDE) 및 회전헐셀(RCHC)에서의 유동 및 전기도금 다중물리 해석연구)

  • Lee, Gyu-Hwan;Hwang, Yang-Jin;Im, Jae-Hong;Jeon, Sang-Hyeon
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.11a
    • /
    • pp.156-156
    • /
    • 2015
  • 도금 시뮬레이션의 목적은 실제 도금 상황에서의 전류밀도 및 도금두께 분포를 정확히 예측하여 최상의 품질과 최적의 공정조건을 확립하는데 있다. 제품에 부착된 도금 두께는 기하학적 배치에 의한 저항 (1차 전류밀도), 전기화학적 전하교환 반응에 의한 분극 (2차 전류밀도) 및 확산, 유동 등 도금물질의 공급에 의한 분극(3차 전류밀도)에 의해 결정이 된다. 현재까지 도금 시뮬레이션은 1차 전류밀도 예측에 대한 전자기학적 해석과 Butler-Volmer 식에 근거한 동력학적 전기화학 해석을 통해 2차 전류밀도 분포 해석만 이루어졌다. 즉, 도금 반응에 있어서 물질공급은 항상 일정하게 유지되는 것을 가정하고 해석을 하였다. 이는 3차 전류밀도 분포에 있어서 전극반응 계면에서의 유동에 의한 물질공급이 전기화학과는 다른 물리(physics) 영역이어서 이를 전기화학과 coupling 하는데 기술적으로 어렵기 때문이었다. 그러므로, 물질공급반응이 속도결정단계가 되는 고속도금이나 저농도 도금, gap, tranch, via hole, through hole 등의 도금의 경우에는 해석결과에 큰 오차를 야기하게 된다. 본 발표에서는 그동안 접근하지 못했던 전기도금 해석에 있어서 유동해석을 커플링하여 다중물리해석을 한 결과를 발표한다. 시편으로는 회전원판전극과 회전 헐셀을 이용하여 회전속도 (rpm)에 따른 전류밀도 및 도금두께 분포의 변화 거동을 예측하였다.

  • PDF