• 제목/요약/키워드: Multiobjective Genetic Algorithm

검색결과 37건 처리시간 0.025초

Multiobjective Optimal Reactive Power Flow Using Elitist Nondominated Sorting Genetic Algorithm: Comparison and Improvement

  • Li, Zhihuan;Li, Yinhong;Duan, Xianzhong
    • Journal of Electrical Engineering and Technology
    • /
    • 제5권1호
    • /
    • pp.70-78
    • /
    • 2010
  • Elitist nondominated sorting genetic algorithm (NSGA-II) is adopted and improved for multiobjective optimal reactive power flow (ORPF) problem. Multiobjective ORPF, formulated as a multiobjective mixed integer nonlinear optimization problem, minimizes real power loss and improves voltage profile of power grid by determining reactive power control variables. NSGA-II-based ORPF is tested on standard IEEE 30-bus test system and compared with four other state-of-the-art multiobjective evolutionary algorithms (MOEAs). Pareto front and outer solutions achieved by the five MOEAs are analyzed and compared. NSGA-II obtains the best control strategy for ORPF, but it suffers from the lower convergence speed at the early stage of the optimization. Several problem-specific local search strategies (LSSs) are incorporated into NSGA-II to promote algorithm's exploiting capability and then to speed up its convergence. This enhanced version of NSGA-II (ENSGA) is examined on IEEE 30 system. Experimental results show that the use of LSSs clearly improved the performance of NSGA-II. ENSGA shows the best search efficiency and is proved to be one of the efficient potential candidates in solving reactive power optimization in the real-time operation systems.

Optimization Design of Log-periodic Dipole Antenna Arrays Via Multiobjective Genetic Algorithms

  • Wang, H.J.
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.1353-1355
    • /
    • 2003
  • Genetic algorithms (GA) is a well known technique that is capable of handling multiobjective functions and discrete constraints in the process of numerical optimization. Together with the Pareto ranking scheme, more than one possible solution can be obtained despite the imposed constraints and multi-criteria design functions. In view of this unique capability, the design of the log-periodic dipole antenna array (LPDA) using this special feature is proposed in this paper. This method also provides gain, front-back level and S parameter design tradeoff for the LPDA design in broadband application at no extra computational cost.

  • PDF

강화된 유전 알고리듬을 이용한 다극 및 다목적 최적화에 관한 연구 (A Study on Strengthened Genetic Algorithm for Multi-Modal and Multiobjective Optimization)

  • 이원보;박성준;윤인섭
    • 한국가스학회지
    • /
    • 제1권1호
    • /
    • pp.33-40
    • /
    • 1997
  • 다극 및 다목적함수 최적화 문제를 해결하기 위해서 유전 알고리듬을 이용한 일반적인 최적화 도구인 APROGA II가 개발되었다. 우선 다극 최적화를 위해서는 다중선택집합탐색 알고리듬을 이용하였다. 두 번째로 다목적함수의 최적화를 위해서는 파레토 우성 토너먼트와 공유개념을 이용한 선택방법과 선택집합을 이용한 연속적인 세대교체법을 이용하여 새로운 알고리듬을 제안하였다. 이들 알고리듬을 이용하여 3개의 탐색엔진(APROGA 탐색엔진, 다극 탐색엔진 그리고 다목적함수 탐색엔진)을 가지고, 이진 및 이산 변수를 다룰 수 있는 APROGA II 시스템이 개발되었다. 그리고 여러 가지 검토함수들과 사례연구들을 적용시켜서 다극 탐색엔진의 성공적인 적용성을 확인하였다.

  • PDF

A Method of Genetic Algorithm Based Multiobjective Optimization via Cooperative Coevolution

  • Lee, Jong-Soo;Kim, Do-Young
    • Journal of Mechanical Science and Technology
    • /
    • 제20권12호
    • /
    • pp.2115-2123
    • /
    • 2006
  • The paper deals with the identification of Pareto optimal solutions using GA based coevolution in the context of multiobjective optimization. Coevolution is a genetic process by which several species work with different types of individuals in parallel. The concept of cooperative coevolution is adopted to compensate for each of single objective optimal solutions during genetic evolution. The present study explores the GA based coevolution, and develops prescribed and adaptive scheduling schemes to reflect design characteristics among single objective optimization. In the paper, non-dominated Pareto optimal solutions are obtained by controlling scheduling schemes and comparing each of single objective optimal solutions. The proposed strategies are subsequently applied to a three-bar planar truss design and an energy preserving flywheel design to support proposed strategies.

Optimization of Train Working Plan based on Multiobjective Bi-level Programming Model

  • Hai, Xiaowei;Zhao, Chanchan
    • Journal of Information Processing Systems
    • /
    • 제14권2호
    • /
    • pp.487-498
    • /
    • 2018
  • The purpose of the high-speed railway construction is to better satisfy passenger travel demands. Accordingly, the design of the train working plan must also take a full account of the interests of passengers. Aiming at problems, such as the complex transport organization and different speed trains coexisting, combined with the existing research on the train working plan optimization model, the multiobjective bi-level programming model of the high-speed railway passenger train working plan was established. This model considers the interests of passengers as the center and also takes into account the interests of railway transport enterprises. Specifically, passenger travel cost and travel time minimizations are both considered as the objectives of upper-level programming, whereas railway enterprise profit maximization is regarded as the objective of the lower-level programming. The model solution algorithm based on genetic algorithm was proposed. Through an example analysis, the feasibility and rationality of the model and algorithm were proved.

유전자 알고리즘을 이용한 축류 송풍기 설계최적화 (Design Optimization of Axial Flow Fan Using Genetic Algorithm)

  • 이상환;안철오
    • 한국유체기계학회 논문집
    • /
    • 제7권2호
    • /
    • pp.7-13
    • /
    • 2004
  • In an attempt to solve multiobjective optimization problems, weighted sum method is most widely used for the advantage that a designer can consider the relative significance of each object functions by weight values but it can be highly sensitive to weight vector and occasionally yield a deviated optimum from the relative weighting values designer designated because the multiobjective function has the form of simple sum of the product of the weighting values and the object functions in traditional approach. To search the design solution agree well to the designer's weighting values, we proposed new multiobjective function which was the functional of each normalized objective functions and considered to find the design solution comparing the distance between the characteristic line and the ideal optimum. In this study, proposed multiobjective function was applied to design high efficiency and low noise axial flow fan and the result shows this approach is effective for the case that the quality of the design can be highly affected by the designer's subjectiveness represented as weighting values in multiobjective design optimization process.

유전자 알고리즘을 이용한 축류 송풍기 설계최적화 (Design Optimization of Axial Flow Fan Using Genetic Algorithm)

  • 유인태;안철오;이상환
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2003년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.397-403
    • /
    • 2003
  • In an attempt to solve multiobjective optimization problems, weighted sum method is most widely used for the advantage that a designer can consider the relative significance of each object functions by weight values but it can be highly sensitive to weight vector and occasionally yield a deviated optimum from the relative weighting values designer designated because the multiobjective function has the form of simple sum of the product of the weighting values and the object functions in traditional approach. To search the design solution well agree to the designer's weighting values, we proposed new multiobjective function which is the functional of each normalized objective functions and considered to find the design solution comparing the distance between the characteristic line and the ideal optimum. In this study, proposed multiobjective function was applied to design high efficiency and low noise axial flow fan and the result shows this approach will be effective for the case that the qualify of the design can be highly affected by the designer's subjectiveness represented as weighting values in multiobjective design optimization process.

  • PDF

유전자 알고리즘(GA)을 이용한 구조물의 동적해석 및 최적화 (Structural Dynamic Optimization Using a Genetic Algorithm(GA))

  • 이영우;성활경
    • 한국정밀공학회지
    • /
    • 제17권5호
    • /
    • pp.93-99
    • /
    • 2000
  • In many dynamic structural optimization problems, the goal is to reduce the total weight of the structure without causing the resonance. Up to now, gradient informations(i.e., design sensitivity) have been used to achieve the goal. For some class of dynamic problems, especially coalescent eigenvalue Problems with multiobjective optimization, the design sensitivity analysis is too much complicated mathematically and numerically. Therefore, this article proposes a new technique fur structural dynamic modification using a mode modification method with Genetic Algorithm(GA). In GA formulation, fitness is defined based on penalty function approach. Design variables are iteratively improved by using genetic algorithm. Two numerical examples are shown, (ⅰ) a cantilevered plate, and (ⅱ) H-shaped structure. The results demonstrate that the proposed method is highly efficient.

  • PDF

Multiobjective Genetic Algorithm for Scheduling Problems in Manufacturing Systems

  • Gen, Mitsuo;Lin, Lin
    • Industrial Engineering and Management Systems
    • /
    • 제11권4호
    • /
    • pp.310-330
    • /
    • 2012
  • Scheduling is an important tool for a manufacturing system, where it can have a major impact on the productivity of a production process. In manufacturing systems, the purpose of scheduling is to minimize the production time and costs, by assigning a production facility when to make, with which staff, and on which equipment. Production scheduling aims to maximize the efficiency of the operation and reduce the costs. In order to find an optimal solution to manufacturing scheduling problems, it attempts to solve complex combinatorial optimization problems. Unfortunately, most of them fall into the class of NP-hard combinatorial problems. Genetic algorithm (GA) is one of the generic population-based metaheuristic optimization algorithms and the best one for finding a satisfactory solution in an acceptable time for the NP-hard scheduling problems. GA is the most popular type of evolutionary algorithm. In this survey paper, we address firstly multiobjective hybrid GA combined with adaptive fuzzy logic controller which gives fitness assignment mechanism and performance measures for solving multiple objective optimization problems, and four crucial issues in the manufacturing scheduling including a mathematical model, GA-based solution method and case study in flexible job-shop scheduling problem (fJSP), automatic guided vehicle (AGV) dispatching models in flexible manufacturing system (FMS) combined with priority-based GA, recent advanced planning and scheduling (APS) models and integrated systems for manufacturing.

브러시리스 직류전동기의 다목적 최적설계 (Multiobjective Design Optimization of Brushless DC Motor)

  • 전연도;약미진치;이주;오재응
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제53권5호
    • /
    • pp.325-331
    • /
    • 2004
  • The multiobjective optimization (MO) problem usually includes the conflicting objectives and the use of conventional optimization algorithms for MO problem does not so good approach to obtain an effective optimal solution. In this paper, genetic algorithm (GA) as an effective method is used to solve such MO problem of brushless DC motor (BLDCM). 3D equivalent magnetic circuit network (EMCN) method which enables us to reduce the computational burden is also used to consider the 3D structure of BLDCM. In order to effectively obtain a set of Pareto optimal solutions in MO problem, ranking method proposed by Fonseca is applied. The objective functions are decrease of cogging torque and increase of torque respectively. The airgap length, teeth width and magnetization angle of PM are selected for the design variables. The experimental results are also shown to confirm the validity of the optimization results.