• Title/Summary/Keyword: Multimodal Network

Search Result 74, Processing Time 0.031 seconds

Development of a Electronic Commerce System of Multi-Modal Information (다중모달을 이용한 전자상거래시스템 개발)

  • 장찬용;류갑상
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.10a
    • /
    • pp.729-732
    • /
    • 2001
  • Individual authentication system that take advantage of multimodal information is very efficient method that can take advantage of method of speech recognition, face recognition, electron signature etc. and protect important information from much dangers that exits on communication network whole as skill that construct security system. This paper deal product connected with hardware from internet space based on public key sign and electron signature description embodied system. Maintenance of public security is explaining that commercial transaction system implementation that is considered is possible as applying individual authentication.

  • PDF

Classification of Behavior of UTD Data using LSTM Technique (LSTM 기법을 적용한 UTD 데이터 행동 분류)

  • Jeung, Gyeo-wun;Ahn, Ji-min;Shin, Dong-in;Won, Geon;Park, Jong-bum
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.477-479
    • /
    • 2018
  • This study was carried out to utilize LSTM(Long Short-Term Memory) technique which is one kind of artificial neural network. Among the 27 types of motion data released by the UTD(University of Texas at Dallas), 3-axis acceleration and angular velocity data were applied to the basic LSTM and Deep Residual Bidir-LSTM techniques to classify the behavior.

  • PDF

Fuzzy Bayesian Network for Fusion of Multimodal Context Information (다양한 형태의 상황 정보 합성을 위한 퍼지 베이지안 네트워크)

  • Yoo Ji-Oh;Cho Sung-Bae
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07b
    • /
    • pp.631-633
    • /
    • 2005
  • 다양한 형태의 상황 정보를 결합하여 추론하기 위해 베이지안 네트워크를 많이 사용한다. 그러나 일반 베이지안 네트워크는 각 노드의 상태가 이산적이기 때문에, 연속적이거나 여러 상태가 동시에 존재할 수 있는 현실의 상황 정보를 처리하기 어렵다. 본 논문에서는 이와 같은 베이지안 네트워크의 단점을 보완하기 위해 다양한 형태의 상황 정보를 퍼지를 통해 전처리하여 베이지안 네트워크를 통해 추론하는 퍼지 베이지안 네트워크를 제안한다. 유용성을 보이기 위해 음악 추천 에이전트를 설계하여 일반 베이지안 네트워크와 비교 실험한 결과, 제안한 방법으로 다양한 상황 정보에 대해 유연한 처리가 가능함을 확인하였다.

  • PDF

Scene Graph Generation with Graph Neural Network and Multimodal Context (그래프 신경망과 멀티 모달 맥락 정보를 이용한 장면 그래프 생성)

  • Jung, Ga-Young;Kim, In-cheol
    • Annual Conference of KIPS
    • /
    • 2020.05a
    • /
    • pp.555-558
    • /
    • 2020
  • 본 논문에서는 입력 영상에 담긴 다양한 물체들과 그들 간의 관계를 효과적으로 탐지하여, 하나의 장면 그래프로 표현해내는 새로운 심층 신경망 모델을 제안한다. 제안 모델에서는 물체와 관계의 효과적인 탐지를 위해, 합성 곱 신경망 기반의 시각 맥락 특징들뿐만 아니라 언어 맥락 특징들을 포함하는 다양한 멀티 모달 맥락 정보들을 활용한다. 또한, 제안 모델에서는 관계를 맺는 두 물체 간의 상호 의존성이 그래프 노드 특징값들에 충분히 반영되도록, 그래프 신경망을 이용해 맥락 정보를 임베딩한다. 본 논문에서는 Visual Genome 벤치마크 데이터 집합을 이용한 비교 실험들을 통해, 제안 모델의 효과와 성능을 입증한다.

A Study on the Optimal Urban Bus Network Design Using the Set Covering Theory (Set Covering 이론을 이용한 시내버스 최적노선망 구축에 관한 연구)

  • 이승재;최재성;백혜선
    • Journal of Korean Society of Transportation
    • /
    • v.17 no.2
    • /
    • pp.137-147
    • /
    • 1999
  • This paper studies on the optimal bus network design in the framework of the set covering theory. The theory enables to cover passenger's loading and alighting areas as the set, and maximize the covering set as much as possible. In other words, it calculates the minimal set of the bus routes for covering whole bus passengers demand. After the optimal set of the bus routes is generated by the set covering theory, multimodal traffic equilibrium assignment is used for evaluating the generated set in terms of passenger's mode and route choice behavior. Whilst most previous works on it have been based on analyzing a specific route in a limited area, this study seeks to optimize the whole bus network.

  • PDF

Multimodal Biological Signal Analysis System Based on USN Sensing System (USN 센싱 시스템에 기초한 다중 생체신호 분석 시스템)

  • Noh, Jin-Soo;Song, Byoung-Go;Bae, Sang-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.5
    • /
    • pp.1008-1013
    • /
    • 2009
  • In this paper, we proposed the biological signal (body heat, pulse, breathe rate, and blood pressure) analysis system using wireless sensor. In order to analyze, we designed a back-propagation neural network system using expert group system. The proposed system is consist of hardware patt such as UStar-2400 ISP and Wireless sensor and software part such as Knowledge Base module, Inference Engine module and User Interface module which is inserted in Host PC. To improve the accuracy of the system, we implement a FEC (Forward Error Correction) block. For conducting simulation, we chose 100 data sets from Knowledge Base module to train the neural network. As a result, we obtained about 95% accuracy using 128 data sets from Knowledge Base module and acquired about 85% accuracy which experiments 13 students using wireless sensor.

Humanized (SCID) Mice as a Model to Study human Leukemia

  • Lee, Yoon;Kim, Donghyun Curt;Kim, Hee-Je
    • Biomedical Science Letters
    • /
    • v.21 no.2
    • /
    • pp.51-59
    • /
    • 2015
  • A humanized mice (hu-mice) model is extremely valuable to verify human cell activity in vivo condition and is regarded as an important tool in examining multimodal therapies and drug screening in tumor biology. Moreover, hu-mice models that simply received human $CD34^+$ blood cells and tissue transplants are also overwhelmingly useful in immunology and stem cell biology. Because generated hu-mice harboring a human immune system have displayed phenotype of human $CD45^+$ hematopoietic cells and when played partly with functional immune network, it could be used to evaluate human cell properties in vivo. Although the hu-mice model does not completely recapitulate human condition, it is a key methodological factor in studying human hematological malignancies with impaired immune cells. Also, an advanced humanized leukemic mice (hu-leukemic-mice) model has been developed by improving immunodeficient mice. In this review, we briefly described the history of development on immunodeficient SCID strain mice for hu-and hu-leukemic-mice model for immunologic and tumor microenviromental study while inferring the potential benefits of hu-leukemic-mice in cancer biology.

Principal Component Analysis of Higher-Order Hyperedges in EEG Data (EEG 데이터의 고차원 하이퍼에지에서의 주성분 분석)

  • Kim, Joon-Shik;Lee, Chung-Yeon;Zhang, Byoung-Tak
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06b
    • /
    • pp.414-416
    • /
    • 2012
  • 고차 주성분 방법으로는 텐서 분석이 있었다. Electroencephalography(EEG) 데이터나 Social Network 데이터에 텐서 분석이 적용되어 주요한 성분들을 찾는 연구들이 있었다. 그러나 텐서 분석은 직관적으로 이해하기에 어려움이 있으며 중요한 노드를 찾는데에는 다소 어려움이 있다. 본 논문에서는 고차 하이퍼에지로 이차원 행렬을 만들고 주성분분석법을 이용하여 중요한 노드를 찾는 새로운 방법론을 제시한다. 데이터로는 Multimodal Memory Game(MMG) 수행시 촬영한 EEG 데이터를 사용하였다. MMG는 TV 드라마 기반의 기억인출게임이다. 베타파의 Power Spectrum Density(PSD)는 각 위치의 채널들의 활성도를 나타내는 지표이다. 우리는 Random Sampling을 바탕으로 PSD 상위 50%의 채널들간의 전이행렬을 구하였다. 그 후 고유치와 고유벡터를 구하였다. 가장 큰 고유치의 고유벡터는 주성분을 나타내며 고유벡터의 각 원소들은 중요도를 나타내는 centrality 이다. 세 명의 피험자에 대한 centrality 상위 30개의 중요한 채널들을 구하였고 세명에 공통적으로 포함되는 채널을 확인하였다.

A Study on Multimodal Neural Network for Intrusion Detection System (멀티 모달 침입 탐지 시스템에 관한 연구)

  • Ha, Whoi Ree;Ahn, Sunwoo;Cho, Myunghyun;Ahn, Seonggwan;Paek, Yunheung
    • Annual Conference of KIPS
    • /
    • 2021.05a
    • /
    • pp.216-218
    • /
    • 2021
  • 최근 침입 탐지 시스템은 기존 시그니처 기반이 아닌 AI 기반 연구로 많이 진행되고 있다. 이는 시그니처 기반의 한계인 이전에 보지 못한 악성 행위의 탐지가 가능하기 때문이다. 또한 로그 정보는 시스템의 중요 이벤트를 기록하여 시스템의 상태를 반영하고 있기 때문에 로그 정보를 사용한 침입 탐지 시스템에 대한 연구가 활발히 이루어지고 있다. 하지만 로그 정보는 시스템 상태의 일부분만 반영하고 있기 때문에, 회피하기 쉬우며, 이를 보완하기 위해 system call 정보를 사용한 멀티 모달 기반 침입 시스템을 제안한다.

A Study on Enhancing Outdoor Pedestrian Positioning Accuracy Using Smartphone and Double-Stacked Particle Filter (스마트폰과 Double-Stacked 파티클 필터를 이용한 실외 보행자 위치 추정 정확도 개선에 관한 연구)

  • Kwangjae Sung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.2
    • /
    • pp.112-119
    • /
    • 2023
  • In urban environments, signals of Global Positioning System (GPS) can be blocked and reflected by tall buildings, large vehicles, and complex components of road network. Therefore, the performance of the positioning system using the GPS module in urban areas can be degraded due to the loss of GPS signals necessary for the position estimation. To deal with this issue, various localization schemes using inertial measurement unit (IMU) sensors, such as gyroscope and accelerometer, and Bayesian filters, such as Kalman filter (KF) and particle filter (PF), have been designed to enhance the performance of the GPS-based positioning system. Among Bayesian filters, the PF has been widely used for the target tracking and vehicle navigation, since it can provide superior performance in estimating the state of a dynamic system under nonlinear/non-Gaussian circumstance. This paper presents a positioning system that uses the double-stacked particle filter (DSPF) as well as the accelerometer, gyroscope, and GPS receiver on the smartphone to provide higher pedestrian positioning accuracy in urban environments. The DSPF employs a nonparametric technique (Parzen-window) to create the multimodal target distribution that approximates the posterior distribution. Experimental results show that the DSPF-based positioning system can provide the significant improvement of the pedestrian position estimation in urban environments.

  • PDF