This paper presents a real-time verification system by extracting a features of multimodal biometrics using hybrid method, which is combined the moment balance and the independent component analysis(ICA). The moment balance is applied to reduce the computation loads by extracting the validity signal due to exclude the needless backgrounds of multimodal biometrics. ICA is also applied to increase the verification performance by removing the overlapping signals due to extract the statistically independent basis of signals. Multimodal biometrics are used both the faces and the fingerprints which are acquired by Web camera and acquisition device, respectively. The proposed system has been applied to the fusion problems of 48 faces and 48 fingerprints(24 persons * 2 scenes) of 320*240 pixels, respectively. The experimental results show that the proposed system has a superior verification performances(speed, rate).
본 논문은 모바일 환경에서의 다중생체인식을 통한 개인인증 시나리오에서 false acceptance rate (FAR)가 향상된 시스템을 제안한다. 다중생체인식을 위하여 얼굴인식과 화자인식을 선택하였으며, 시스템의 인식 시나리오는 다음을 따른다. 얼굴인식을 위하여 Modified census transform (MCT) 기반의 얼굴검출과 k-means 클러스터 분석 (cluster analysis) 알고리즘 기반의 눈 검출을 통해 얼굴영역 전처리를 수행하고, principal component analysis (PCA) 기반의 얼굴인증 시스템을 구현한다. 화자인식을 위하여 음성의 끝점추출과 Mel frequency cepstral coefficient (MFCC) 특징을 추출하고, dynamic time warping (DTW) 기반의 화자 인증 시스템을 구현한다. 그리고 각각의 생체인식을 본 논문에서 제안된 방법을 기반으로 융합하여 인식률을 향상시킨다. 본 논문의 실험은 Android 환경에서 수행하였으며, 구현한 다중생체인식 시스템과 단일생체인식 시스템과의 FAR을 비교하였다. 단일 얼굴인식의 FAR은 4.6%, 단일 화자인식의 FAR은 6.7%로 각각 나타났으며, 제안된 다중생체인식 시스템의 FAR은 1.8%로 크게 감소하였다.
본 논문은 유비쿼터스 컴퓨팅 환경 기반에서의 얼굴과 서명을 이용한 다중생체인식 시스템을 제안한다. 이를 위해서 얼굴과 서명 영상은 PDA로 획득하고, 취득한 영상은 무선랜을 통해 인증 서버로 전송하여 서버로부터 인증된 결과를 받도록 하였다. 구현한 다중 생체 인식 시스템의 구성은 두 부분으로 나눌 수 있는데, 먼저 클라이언트 부문인 PDA 에서는 임베디드 비주얼 C++로 작성된 사용자 인터페이스 프로그램을 통하여 사용자 등록과 인증 과정을 수행한다. 그리고, 서버 부문에서는 얼굴인식에서 우수한 성능을 보이는 PCA와 LDA 알고리즘을 사용하였고, 서명인식에서는 구간 분할 매칭으로 구간을 분할 한 후 X축과 Y 축의 투영값을 Kernel PCA와 LDA 알고리즘에 적용하였다. 얼굴과 서명영상을 이용하여 제안된 알고리즘을 평가한 결과 기존의 단일 생체인식 기법에 비해 우수한 결과를 보임을 확인할 수 있었다.
Maity, Sayan;Abdel-Mottaleb, Mohamed;Asfour, Shihab S.
Journal of Information Processing Systems
/
제16권1호
/
pp.6-29
/
2020
Biometrics identification using multiple modalities has attracted the attention of many researchers as it produces more robust and trustworthy results than single modality biometrics. In this paper, we present a novel multimodal recognition system that trains a deep learning network to automatically learn features after extracting multiple biometric modalities from a single data source, i.e., facial video clips. Utilizing different modalities, i.e., left ear, left profile face, frontal face, right profile face, and right ear, present in the facial video clips, we train supervised denoising auto-encoders to automatically extract robust and non-redundant features. The automatically learned features are then used to train modality specific sparse classifiers to perform the multimodal recognition. Moreover, the proposed technique has proven robust when some of the above modalities were missing during the testing. The proposed system has three main components that are responsible for detection, which consists of modality specific detectors to automatically detect images of different modalities present in facial video clips; feature selection, which uses supervised denoising sparse auto-encoders network to capture discriminative representations that are robust to the illumination and pose variations; and classification, which consists of a set of modality specific sparse representation classifiers for unimodal recognition, followed by score level fusion of the recognition results of the available modalities. Experiments conducted on the constrained facial video dataset (WVU) and the unconstrained facial video dataset (HONDA/UCSD), resulted in a 99.17% and 97.14% Rank-1 recognition rates, respectively. The multimodal recognition accuracy demonstrates the superiority and robustness of the proposed approach irrespective of the illumination, non-planar movement, and pose variations present in the video clips even in the situation of missing modalities.
다중 생체 인식은 둘 이상의 생체 정보를 획득하여 이를 기반으로 개인 인증 및 신원을 확인하는 방법으로, 패턴 분류 알고리즘을 이용한 RBF 기반 유사도 단계 융합 다중 생체 인식은 입력된 생체 정보와 데이터베이스 내의 유사도를 나타내는 매칭 값을 각 단일 생체 인식 시스템으로부터 제공받아 이를 이용하여 특징 벡터를 구성하고, 특징 공간상에서 사용자와 위조자를 구분해주는 최적의 판정 경계를 탐색하여 인식을 수행하는 방법이다. 이러한 패턴 분류 알고리즘의 경우 특징 벡터를 구성하는 각 매칭값이 동일한 신뢰도를 가지고 있다는 가정 하에 고정된 판정 경계를 구성하고 분류를 수행하게 된다. 한편, 생체 인식 시스템의 인식 결과는 입력되는 생체 정보의 품질에 영향을 받을 수 있음이 기존의 연구에서 보고되고 있는데, 이는 일반적인 RBF 기반 유사도 단계 융합 다중 생체 인식 시스템을 구성하고 있는 단일 생체 인식 시스템 중 하나의 시스템에 저품질의 생체 정보가 입력되어 신뢰할 수 없는 매칭값을 출력한 경우에는 이를 기반으로 구성된 특징 벡터의 판정이 오분류 되거나 그 결과의 신뢰도가 감소될 수 있는 문제가 있다. 이에 대한 대안으로 본 논문에서는 각 단일 생체 인식 시스템에 입력되는 생체 정보의 품질을 활용하여 RBF 기반 유사도 단계 융합 다중 생체 인식 시스템에서 품질에 따라 유동적인 판정 경계를 구성하여 특징 벡터를 구성하는 각 매칭값이 판정에 미치는 영향을 조절하고자 하였다. 이를 통해 각 생체 정보가 그 품질에 따라 판정에 미치는 영향이 달리 적용될 수 있도록 하였으며, 그 결과 단일 생체 인식과 일반적인 RBF 기반 유사도 단계 융합 다중 생체 인식에 비해 보다 개선된 인식 결과와 신뢰도를 얻을 수 있었다.
본 논문에서는 스마트폰 환경의 얼굴 검출, 인식 및 화자 인증 기반 다중생체인식 개인인증 시스템을 제안한다. 제안된 시스템은 Modified Census Transform과 gabor filter 및 k-means 클러스터 분석 알고리즘을 통해 얼굴의 주요 특징을 추출하여 얼굴인식을 위한 데이터 전처리를 수행한다. 이후 Linear Discriminant Analysis기반 본인 인증을 수행하고(얼굴인식), Mel Frequency Cepstral Coefficient기반 실시간성 검증(화자인증)을 수행한다. 화자인증에 사용하는 음성 정보는 실시간으로 변화하므로 본 논문에서는 Dynamic Time Warping을 통해 이를 해결한다. 제안된 다중생체인식 시스템은 얼굴 및 음성 특징 정보를 융합 및 스마트폰 환경에 최적화하여 실시간 얼굴검출, 인식과 화자인증 과정을 수행하며 단일 생체인식에 비해 약간 낮은 95.1%의 인식률을 보이지만 1.8%의 False Acceptance Ratio를 통해 객관적인 실시간 생체인식 성능을 입증하여 보다 신뢰할 수 있는 시스템을 완성한다.
Identification of humans from multiple view points is an important task for surveillance and security purposes. For optimal performance the system should use the maximum information available from sensors. Multimodal biometric systems are capable of utilizing more than one physiological or behavioral characteristic for enrollment, verification, or identification. Since gait alone is not yet established as a very distinctive feature, this paper presents an approach to fuse face and gait for identification. In this paper we will use the single camera case i.e. both the face and gait recognition is done using the same set of images captured by a single camera. The aim of this paper is to improve the performance of the system by utilizing the maximum amount of information available in the images. Fusion is considered at decision level. The proposed algorithm is tested on the NLPR database.
본 논문에서는 사용자 인증시스템에서 인식결과에 대한 예측이 가능한 품질평가모델을 설계하고 분석한다. 제안하는 품질평가기법은 다중고유얼굴 정보에 T-검정과 같은 소표본 분석법을 적용하여 CIMR(Confidence Interval Matching Ratio)이라는 품질 값이 결과로 나타나도록 설계하였으며, 이 CIMR 기반의 품질평가기법을 이용하여 서로 다른 바이오정보간의 차별성이 잘 나타나는지 향후 보편화될 멀티바이오정보 환경을 고려하여 실험하였다. 또한 획득한 바이오정보의 인증결과에 대한 예측가능성 실험은 T-검정기반의 CIMR에 내포되어있는 평균 $\bar{X}$ 와 분산 $s^2$을 이용하였으며, 사용자인증 결과에 대한 예측은 최대 88%정도의 정확도를 보인다.
본 논문에서는 이동환경에서 개인의 신원을 인증하는 수단으로 치열영상과 음성을 생체정보로 이용한 멀티모달 화자인증 방법에 대하여 제안한다. 제안한 방법은 이동환경의 단말장치중의 하나인 스마트폰의 영상 및 음성 입력장치를 이용하여 생체 정보를 획득하고, 이를 이용하여 사용자 인증을 수행한다. 더불어, 제안한 방법은 전체적인 사용자 인증 성능의 향상을 위하여 두 개의 단일 생체인식 결과를 결합하는 멀티모달 방식으로 구성하였고, 결합 방법으로는 시스템의 제한된 리소스를 고려하여 비교적 간단하면서도 우수한 성능을 보이는 가중치 합의 방법을 사용하였다. 제안한 멀티모달 화자인증 시스템의 성능평가는 스마트폰에서 획득한 40명의 사용자에 대한 데이터베이스를 이용하였고, 실험 결과, 치열영상과 음성을 이용한 단일 생체인증 결과는 각각 8.59%와 11.73%의 EER를 보였으며, 멀티모달 화자인증 결과는 4.05%의 EER를 나타냈다. 이로부터 본 논문에서는 인증 성능을 향상하기 위하여 두 개의 단일 생체인증 결과를 간단한 가중치 합으로 결합한 결과, 높은 인증 성능의 향상을 도모할 수 있었다.
바이오인식 시스템은 변하지 않는 고유의 특성으로 인하여 범죄를 포함한 다양한 분야에서 널리 사용되고 있다. 그러나 바이오인식정보가 불법 사용자에게 누설되었을 때 많은 문제점을 지니고 있다. 본 논문에서는 지문과 얼굴 정보를 보호하기 위하여 실수형 오류정보 부호 코드화를 수행하는 실수형 퍼지 볼트를 이용한 다중 바이오 인식 시스템을 개발한다. 제안된 방법은 실수형 퍼지볼트를 이용함으로써 분실시 재생성할 수 없는 지문 및 얼굴 특징값과 달리 개인 킷값을 수시로 변경할 수 있다는 장점과 두 가지 바이오정보를 융합함으로써 보안이 강화된 바이오인식 시스템을 구현할 수 있다는 장점이 있다. 제안된 방법의 타당성을 검증하기 위하여 실험한 결과 기존 방법에 비하여 우수한 결과를 나타냈다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.