• Title/Summary/Keyword: Multilayers

Search Result 425, Processing Time 0.031 seconds

Improvement of generation capacity per unit site area by the optimization of photovoltaic array (태양광어레이 최적화에 의한 단위 부지면적당 발전량 개선)

  • Kim, Eui Hwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.109.2-109.2
    • /
    • 2011
  • A photovoltaic system is getting the spotlight for a environment-friendly energy source. But its location is limited because a lot of land is necessary for photovoltaic arrays. Nevertheless, its dissemination is rapidly increasing more than 40 % every year and exceeded about 400 MW in 2009. The radical growth of a photovoltaic system aggravated a lack of sites, so that forests and farmland were destroyed. It is demanded to make use of a vacant lot or little piece of land for the way to solve the lack of sites and improve the location requirements for a photovoltaic system. General photovoltaic arrays are consist of a single layer structure and needs enough separation distances to maximize the amount of solar radiation and to eliminate influences by the shadow of other arrays. So that a large amount of land is required for the site. The solar cell arrays with long separation distances can not be placed in a small vacant lot and its site application efficiency is low. This study optimized photovoltaic arrays as multilayered structure with movable sleeves for the efficient photovoltaic in a small site. The existing photovoltaic arrays with a single layer structure were fixed or tracking systems. In this experimental equipment, photovoltaic arrays attached to the multilayers have rectilinear movement and rotary motion using sleeves. Therefore, shadow influences were removed and the generation capacity was improved. On the simulation result, generation increased by about 30% in the same site considering shadow influences and so on.

  • PDF

Fabrication and Characteristics of Magnetic Tunneling Transistors using the Amorphous n-Type Si Films (비정질 n형 Si 박막을 이용한 자기터널링 트랜지스터 제작과 특성)

  • Lee, Sang-Suk;Lee, Jin-Yong;Hwang, Do-Guwn
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.3
    • /
    • pp.276-283
    • /
    • 2005
  • Magnetic tunneling transistor (MTT) device using the amorphous n-type Si semiconductor film for base and collector consisting of the [CoFe/NiFe](free layer) and Si(top layer) multilayers was used to study the spin-dependent hot electron magnetocurrent (MC) and tunneling magnetoresistance (TMR) at room temperature. A large MC of 40.2 % was observed at the emitter-base bias voltage ( $V_{EB}$ ) of 0.62 V. The increasing emitter hot current and transfer ratio ( $I_{C}$/ $I_{E}$) as $V_{EB}$ are mainly due to a rapid increase of the number of conduction band states in the Si collector. However, above the $V_{EB}$ of 0.62 V, the rapid decrease of MC was observed in amorphous Si-based MTT because of hot electron spin-dependent elastic scattering across CoFe/Si interfaces.

Assembly of Biomimetic Peptoid Polymers

  • Nam, Gi-Tae
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.10.2-10.2
    • /
    • 2011
  • The design and synthesis of protein-like polymers is a fundamental challenge in materials science. A biomimetic approach is to explore the impact of monomer sequence on non-natural polymer structure and function. We present the aqueous self-assembly of two peptoid polymers into extremely thin two-dimensional (2D) crystalline sheets directed by periodic amphiphilicity, electrostatic recognition and aromatic interactions. Peptoids are sequence-specific, oligo-N-substituted glycine polymers designed to mimic the structure and functionality of proteins. Mixing a 1:1 ratio of two oppositely charged peptoid 36 mers of a specific sequence in aqueous solution results in the formation of giant, free-floating sheets with only 2.7 nm thickness. Direct visualization of aligned individual peptoid chains in the sheet structure was achieved using aberration-corrected transmission electron microscopy. Specific binding of a protein to ligand-functionalized sheets was also demonstrated. The synthetic flexibility and biocompatibility of peptoids provide a flexible and robust platform for integrating functionality into defined 2D nanostructures. In the later part of my talk, we describe the use of metal ions to construct two-dimensional hybrid films that have the ability to self-heal. Incubation of biomimetic peptoid polymers with specific divalent metal ions results in the spontaneous formation of uniform multilayers at the air-water interface. We anticipate that ease of synthesis and transfer of these two-dimensional materials may have many potential applications in catalysis, gas storage and sensing, optics, nanomaterial synthesis, and environmentally responsive scaffolds.

  • PDF

Magnetic and Magneto-Optical Properties of FeCo/Pd Multilayers (FeCo/Pd 초격자 다층박막의 자기 및 자기광학적 특성)

  • 김진홍;신성철
    • Journal of the Korean Magnetics Society
    • /
    • v.3 no.1
    • /
    • pp.56-60
    • /
    • 1993
  • We have investigated the dependence of the magnetization, anisotropy, coercivity, and Kerr rotation on the Fe concentration in FeCo/Pd multilayer thin films, where the Fe concentration in the FeCo sublayer varied between 0 and 100% with maintaining the same sublayer thickness of $2.5\;{\AA}$ FeCo and $10.5\;{\AA}$A Pd. The maximum saturation magnetization was observed at the Fe concentration of about 48at.% in the FeCo sublayer. Perpendicular magnetic anisotropy and coercivity of the FeCo/Pd multilayer thin film decreased monotonically with increasing the Fe con-centration. The Kerr rotation angle also decreased with increasing the Fe concentration and the amount of vari-ation was remarkably changed with decreasing the light wavelength.

  • PDF

optical Simulation on EUV Reflectivity of Mo/Si Multilayer Structure (Mo/Si 다층박막의 극자외선 반사도에 대한 전산모사)

  • 이영태;강인용;정용재;이승윤;허성민
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.8 no.2
    • /
    • pp.19-24
    • /
    • 2001
  • The effect of thickness variation and inter-diffusion layer on the reflectivity of Mo/Si multilayer has been investigated. The reflectivity of the imperfect Mo/Si multilayer with thickness variation of 28% was found to be lowered by 10.8% compared to that of ideal Mo/Si multilayers with 40-periods. When the inter-diffusion layer is taken into account, the reflectivity is decreased by 4.7% additionally. We also fecund that the reflectivity continued to increase until the 25th-layer but it showed irregular tendencies about increment and decrement from the 26th-layer of Mo/Si multilayer structures.

  • PDF

Heat-induced coarsening of layer-by-layer assembled mixed Au and Pd nanoparticles

  • Shon, Young-Seok;Shon, Dayeon Judy;Truong, Van;Gavia, Diego J.;Torrico, Raul;Abate, Yohannes
    • Advances in nano research
    • /
    • v.2 no.1
    • /
    • pp.57-67
    • /
    • 2014
  • This article shows the coarsening behavior of nanoparticle multilayers during heat treatments which produce larger metallic nanostructures with varying shapes and sizes on glass slides. Nanoparticle multilayer films are initially constructed via the layer-by-layer self-assembly of small and monodispersed gold and/or palladium nanoparticles with different compositions (gold only, palladium only, or both gold and palladium) and assembly orders (compounding layers of gold layers over palladium layers or vice versa). Upon heating the slides at $600^{\circ}C$, the surface nanoparticles undergo coalescence becoming larger nanostructured metallic films. UV-Vis results show a clear reliance of the layering sequence on the optical properties of these metal films, which demonstrates an importance of the outmost (top) layers in each nanoparticle multilayer films. Topographic surface features show that the heat treatments of nanoparticle multilayer films result in the nucleation of nanoparticles and the formation of metallic cluster structures. The results confirm that different composition and layering sequence of nanoparticle multilayer films clearly affect the coalescence behavior of nanoparticles during heat treatments.

The Applications of Sol-Gel Derived Tin Oxide Thin Films

  • Park, Sung-Soon;John D. Mackenzie
    • The Korean Journal of Ceramics
    • /
    • v.2 no.1
    • /
    • pp.1-10
    • /
    • 1996
  • Transparent conducting $SnO_2$-based thin films have been coated on float substrates such as fused quartz, and ceramic fiber cloths such as the Nexel and E-glass cloth from tin alkoxides by the sol-gel technique. Also, thin films of alternating layers of $SnO_2$ and $SiO_2$ have been fabricated by dip coating. The sheet resistance and average visible transmittance of the films were investigated in the aspect of the applications as transparent electrodes such as liquid crystal displays, photo-detectors and solar cells. The Nextel and E-glass cloths coated with antimony-doped tin oxide (ATO) had sheet resistance of as low as $20 \;ohm/{\Box}$ and $120ohm/\;{\Box}$, respectively. The promotion effects of additives as $La_2O_3$ and Pt on the ethanol gas sensing properties of the films were investigated in the aspects of the applications as an alcohol sensor and a breath alcohol checker. Possible evidence of quantum well effects in the oxide multilayers of $SnO_2$ and $SiO_2$ was investigated.

  • PDF

Effect of Microstructural Design on the Electrical Properties of Y2O3-Stabilized ZrO2 (미세구조 설계에 따른 이트리아 안정화 지르코니아의 전기적 성질 변화)

  • 김선재;김경호;오석진;강대갑;국일현
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.9
    • /
    • pp.717-722
    • /
    • 1993
  • Effects of microstructures on the electrical properties of ZrO2 based ceramics were analyzed by modeling layer arrangements and mixed phase structures. Single layers and alternating multilayers were made from 3mol% and 8mol% Y2O3 doped ZrO2 powders, while mixed specimen was made by blending and compacting these raw powders. After sintering at 150$0^{\circ}C$ for 2hr in air, AC impedance characteristics were measured. Contributiion of bulk comonent to total resistivity and its temperature-dependence were larger in 8Y-ZrO2 single layer than in 3Y-ZrO2 single layer. The multilayered specimen connected in serial to electrodes showed partial characteristics of both 3Y-ZrO2 and 8Y-ZrO2 single layers. The multilayered specimen connected in parallel to electrodes and the mixed specimen exhibited characteristics mainly of 8Y-ZrO2 single layer. The multilayered specimen connected in parallel to electrodes revealed the highest electrical conductivity near the operating temperature of solid oxide fuel cell. However, it is expected that the mixed specimen is appropriate for the applications because of its relatively high electrical conductivity with high strength expected.

  • PDF

Slenderness limit for SSTT-confined HSC column

  • Khun, Ma Chau;Awang, Abdullah Zawawi;Omar, Wahid
    • Structural Engineering and Mechanics
    • /
    • v.50 no.2
    • /
    • pp.201-214
    • /
    • 2014
  • Due to the confinement effects, Steel-Straps Tensioning Technique (SSTT) can significantly enhance the strength and ductility of high-strength concrete (HSC) members (Moghaddam et al. 2008). However, the enhancement especially in strength may result in slender member and more susceptible to instability (Jiang and Teng 2012a). This instability is particularly significant in HSC member as it inherent the brittle nature of the material (Galano et al. 2008). The current slenderness limit expression used in the design is mainly derived from the experiment and analysis results based on Normal strength concrete (NSC) column and therefore the direct application of these slenderness limit expressions to the HSC column is being questioned. Besides, a particular slenderness limit for the SSTT-confined HSC column which incorporated the pre-tensioned force and multilayers effects is not yet available. Hence, an analytical study was carried out in the view of developing a simple equation in order to determine the slenderness limit for HSC column confined with SSTT. Based on the analytical results, it was concluded that the existing slenderness limit expressions used in the design are appropriate for neither HSC columns nor SSTT-confined HSC columns. In this paper, a slenderness limit expression which has incorporated the SSTT-confinement effects is proposed. The proposed expression can also be applied to unconfined HSC columns.

Vibrational characteristics of multi-phase nanocomposite reinforced circular/annular system

  • Zhou, Changlin;Zhao, Yi;Zhang, Ji;Fang, Yuan;Habibi, Mostafa
    • Advances in nano research
    • /
    • v.9 no.4
    • /
    • pp.295-307
    • /
    • 2020
  • The vibrational characteristics of Multi-Phase Nanocomposite (MPC) reinforced annular/circular plate under initially stresses are presented using the state-space formulation based on three-dimensional elasticity theory (3D-elasticity theory) and Differential Quadrature Method (DQM). The MPC reinforced annular/circular plate is under initial lateral stress and composed of multilayers with Carbon Nanotubes (CNTs) uniformly dispersed in each layer, but its properties change layer-by-layer along the thickness direction. The State-Space based Differential Quadrature Method (SS-DQM) is presented to examine the frequency behavior of the current structure. Halpin-Tsai equations and fiber micromechanics are used in the hierarchy to predict the bulk material properties of the multi-scale composite. A singular point is investigated for modeling the circular plate. The CNTs are supposed to be randomly oriented and uniformly distributed through the matrix of epoxy resin. Afterward, a parametric study is done to present the effects of various types of sandwich circular/annular plates on frequency characteristics of the MPC reinforced annular/circular plate using 3D-elasticity theory.