• 제목/요약/키워드: Multilayer solar cells

검색결과 18건 처리시간 0.036초

Characteristics of ITO/Ag-Pd-Cu/ITO Multilayer Electrodes for High Efficiency Organic Solar Cells

  • Kim, Hyo-Jung;Kang, Sin-Bi;Na, Seok-In;Kim, Han-Ki
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.257.1-257.1
    • /
    • 2014
  • We investigated characteristics of ITO/Ag-Pd-Cu (APC)/ITO multilayer electrodes prepared by direct current magnetron sputtering for use as an anode in organic solar cells (OSCs). To optimize electrical properties of ITO/APC/ITO multilayer, we fabricated the ITO/APC/ITO multilayer at a fixed ITO thickness of 30 nm as a function of APC thickness. Compare to the surface of Ag layer on ITO, the APC had a smooth surface morphology. At optimized APC thickness of 12 nm, the ITO/APC/ITO multilayer exhibited a sheet resistance of $6{\Omega}/square$ and optical transmittance of 84.15% at a wavelength of 550 nm which is comparable to conventional ITO/Ag/ITO multilayer. However, the APC-based ITO multilayer showed a higher average transmittance in a visible region than the Ag-based ITO multilayer. The higher average transmittance of ITO/APC/ITO multilayer indicated the multilayer is suitable anode for organic solar cells with P3HT:PCBM active layer. OSCs fabricated on the optimized ITO/ACP/ITO multilayer exhibited a better performance with a fill factor of 64.815%, a short circuit current of $8.107mA/cm^2$, an open circuit voltage of 0.59 V, and power conversion efficiency (3.101%) than OSC with ITO/Ag/ITO multilayer (2.8%).

  • PDF

프로터결정 실리콘 다층막 태양전지의 특성 연구 (Characterization of the protocrystalline silicon multilayer solar cells)

  • 권성원;곽중환;명승엽;임굉수
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 춘계학술대회
    • /
    • pp.145-148
    • /
    • 2006
  • The protocrystalline silicon (pc-Si:H) multilayer solar cell is very promising owing to its fast stabilization with low degradation against light irradiation. However, the pc-Si:H multi layers have not extensively been investigated in detail on its material characteristics yet. We present the material characteristics of pc-Si:H multilayer using a transmission electron microscopy(TEM), and Raman spectroscopy. In addition, we present the superior light-soaking behavior of the pc-Si:H mutt i layer solar cell. A TEM micrograph shows that a pc-Si:H multilayer has a repeatedly layered structure and crystalline-like objects in a-Si:H matrix. A Raman spectra introduces improved short-range-order and medium-range-order in pc-Si:H multilayer. As a result the excellent metastability of the pc-Si:H multilayer solar cell is primarily due to the repeatedly layered structure that improves a structural order in absorber layer.

  • PDF

고 안정화 프로터결정 실리콘 다층막 태양전지 (Highly Stabilized Protocrystalline Silicon Multilayer Solar Cells)

  • 임굉수;곽중환;권성원;명승엽
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2005년도 춘계학술대회
    • /
    • pp.102-108
    • /
    • 2005
  • We have developed highly stabilized (p-i-n)-type protocrystalline silicon (pc-Si:H) multilayer solar cells. To achieve a high conversion efficiency, we applied a double-layer p-type amorphous silicon-carbon alloy $(p-a-Si_{1-x}C_x:H)$ structure to the pc-Si:H multilayer solar cells. The less pronounced initial short wavelength quantum efficiency variation as a function of bias voltage proves that the double $(p-a-Si_{1-x}C_x:H)$ layer structure successfully reduces recombination at the p/i interface. It was found that a natural hydrogen treatment involving an etch of the defective undiluted p-a-SiC:H window layer before the hydrogen-diluted p-a-SiC:H buffer layer deposition and an improvement of the order in the window layer. Thus, we achieved a highly stabilized efficiency of $9.0\%$ without any back reflector.

  • PDF

Organic Photovoltaic Devices on $HNO_3$-Treated Multilayer Graphene Electrodes

  • Jung, Yong Un;Na, Seok-In;Kim, Han-Ki;Kang, Seong Jun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.235-235
    • /
    • 2013
  • We reported on the characteristics of organic solar cells (OSCs) fabricated on $HNO_3$-treated multilayer graphene (MLG) transparent electrodes. MLG electrodes were prepared using a chemical vapor deposition and a multi-transfer process. Compared to organic solar cells (OSCs) on the ITO electrodes had a fill factor of 65.97%, and a power conversion efficiency (PCE) of 3.364%, OSCs on the MLG (three-layer graphene) electrodes with sheet resistance of $274{\pm}1{\Omega}$/square and transparency of 92.1% had a fill factor of 43.46%, and a power conversion efficiency (PCE) of 2.019%. However, OSCs on the HNO3-treated MLG electrodes with lower sheet resistance of $119{\pm}1{\Omega}$/square had a fill factor of 57.54%, and a PCE of 2.861%. The results would provide a promising method to improve the performance of large-area OSCs based on MLG electrodes.

  • PDF

Cu2ZnSn(S,Se)4 (CZTSSe) 박막 태양전지 적용을 위한 마그네트론 스퍼터링으로 증착된 AZO/Ag/AZO 투명전극의 특성 (Characteristics of an AZO/Ag/AZO Transparent Conducting Electrode Fabricated by Magnetron Sputtering for Application in Cu2ZnSn(S,Se)4 (CZTSSe) Solar Cells)

  • 이동민;장준성;김지훈;이인재;이병훈;조은애;김진혁
    • 한국재료학회지
    • /
    • 제30권6호
    • /
    • pp.285-291
    • /
    • 2020
  • Recent advances in technology using ultra-thin noble metal film in oxide/metal/oxide structures have attracted attention because this material is a promising alternative to meet the needs of transparent conduction electrodes (TCE). AZO/Ag/AZO multilayer films are prepared by magnetron sputtering for Cu2ZnSn(S,Se)4 (CZTSSe) of kesterite solar cells. It is shown that the electrical and optical properties of the AZO/Ag/AZO multilayer films can be improved by the very low resistivity and surface plasmon effects due to the deposition of different thicknesses of Ag layer between oxide layers fixed at AZO 30 nm. The AZO/Ag/AZO multilayer films of Ag 15 nm show high mobility of 26.4 ㎠/Vs and low resistivity and sheet resistance of 3.5810-5 Ωcm and 5.0 Ω/sq. Also, the AZO/Ag (15 nm)/AZO multilayer film shows relatively high transmittance of more than 65 % in the visible region. Through this, we fabricated CZTSSe thin film solar cells with 7.51 % efficiency by improving the short-circuit current density and fill factor to 27.7 mV/㎠ and 62 %, respectively.

Ag의 두께에 따른 V2O5/Ag/ITO 구조의 다층 박막의 광학적, 전기적 특성 (The Effect of Ag thickness on Optical and Electrical Properties of V2O5/Ag/ITO Multilayer)

  • 고영희;박광훈;고항주;하준석
    • 마이크로전자및패키징학회지
    • /
    • 제21권1호
    • /
    • pp.7-11
    • /
    • 2014
  • 최근 유기태양전지의 효율향상을 위하여 고분자의 PEDOT:PSS 양극(Anode) 버퍼층이 널리 사용되고 있다. 그러나 고효율 태양전지의 개발과 더불어 새로이 적용되고 있는 역구조 유기 태양전지에는 이 같은 친수성의 PEDOT:PSS 고분자가 소수성의 양극이나 광활성층 상에 균일하게 코팅되는 것이 문제점으로 지적되고 있다. 이러한 문제점을 극복하기 위해서 양극 버퍼층으로 $V_2O_5$와 같은 p-type 금속산화물을 사용한 연구가 많이 보고되고 있다. 본 연구에서는 저항을 낮추고 홀 이동도를 향상 시키기 위해 Ag를 삽입층으로 한 $V_2O_5$/Ag/ITO 구조의 다층 박막을 제작하고 Ag두께에 따른 전기적, 광학적, 구조적 특성의 변화에 대하여 살펴보았다. 가시광 영역에서는 Ag 두께가 증가함에 따라 광 투과율이 감소하는 반면 전기적 특성은 향상되는 것을 볼 수 있었다. 광소자의 투명전극산화물로 적합한 구조인지 평가하기 위해 Figure Of Merit(FOM)의 값을 측정하였고, 그 결과 Ag의 두께가 4 nm에서 가장 좋은 특성을 나타냈다. $V_2O_5$/Ag/ITO 구조의 다층 박막은 가시광 영역에서 Ag의 두께가 4 nm일 때 88%의 광 투과율을 나타내었고 저항 값은 $4{\times}10^{-4}{\Omega}cm$로써 광소자로 적합한 구조임을 확인하였다.

Transparent TIO/Ag NW/TIO Hybrid Electrode Grown on PET for Flexible Organic Solar Cell

  • Seo, Ki-Won;Lee, Ju-Hyun;Na, Seok-In;Kim, Han-ki
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.394.2-394.2
    • /
    • 2014
  • We fabricated highly transparent and flexible Ti doped In2O3 (TIO)/Ag nanowire(NW)/TIO (TAT) multilayer electrodes by linear facing target sputtering (LFTS) and brush-painting for used as flexible for anode organic solar cells(FOSCs). The characteristics of TAT transparent anode as a function of number of brush-painting cycles was also investigated. At optimized conditions we achieved highly flexible TAT multilayer electrodes with a low sheet resistance of $9.01{\Omega}/square$ and a high diffusive transmittance more than 80% in visible region as well as superior mechanical stability. The effective embedment of the Ag NW network between top and bottom TIO films led to a metallic conductivity, high transparency. Based on FE-SEM HRTEM, and XRD analysis, we can find that the Ag NW network was effectively embedded between top and bottom TIO layers due to good flexibility of Ag NW, the TAT multilayer showed superior flexibility than single TIO layer. Successful operation of FOSCs with high power conversion efficiency of 3.01% indicates that TAT hybrid electrode is a promising alternative to conventional ITO electrode for high performance FOSCs.

  • PDF

Light Scattering Amplification on Dye Sensitized Solar Cells Assembled by Hollyhock-shaped CdS-TiO2 Composites

  • Lee, Ga-Young;Lee, Hu-Ryul;Um, Myeong-Heon;Kang, Mi-Sook
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권9호
    • /
    • pp.3043-3047
    • /
    • 2012
  • To investigate the scattering layer effect of a $TiO_2$ multilayer in dye-sensitized solar cells (DSSCs), we designed a new DSSC system, assembled with a CdS-$TiO_2$ scattering layer electrode. A high-magnification SEM image exhibited hollyhock-like particles with a width of 1.5-2.0 ${\mu}m$ that were aggregated into 10-nm clumps in a hexagonal petal shape. The efficiency was higher in the DSSC assembled with a CdS-$TiO_2$ scattering layer than in the DSSC assembled with $TiO_2$-only layers, due to the decreased resistance in electrochemical impedance spectroscopy (EIS). The short-circuit current density ($J_{sc}$) was increased by approximately 7.26% and the open-circuit voltage ($V_{oc}$) by 2.44% over the 1.0 wt % CdS-$TiO_2$ composite scattering layer and the incident photon-to-current conversion efficiency (IPCE) in the maximum peak was also enhanced by about 5.0%, compared to the DSSC assembled without the CdS-$TiO_2$scattering layer.

Electrical and Optical Properties of Asymmetric Dielectric/Metal/Dielectric (D/M/D) Multilayer Electrode Prepared by Radio-Frequency Sputtering for Solar Cells

  • Pandey, Rina;Lim, Ju Won;Lim, Keun Yong;Hwang, Do Kyung;Choi, Won Kook
    • 센서학회지
    • /
    • 제24권1호
    • /
    • pp.15-21
    • /
    • 2015
  • Transparent and conductive multilayer thin films consisting of three alternating layers FZTO/Ag/$WO_3$ have been fabricated by radio-frequency (RF) sputtering for the applications as transparent conducting oxides and the structural and optical properties of the resulting films were carefully studied. The single layer fluorine doped zinc tin oxide (FZTO) and tungsten oxide ($WO_3$) films grown at room temperature are found to have an amorphous structure. Multilayer structured electrode with a few nm Ag layer embedded in FZTO/Ag/$WO_3$ (FAW) was fabricated and showed the optical transmittance of 87.60 % in the visible range (${\lambda}=380{\sim}770nm$), quite low electrical resistivity of ${\sim}10^{-5}{\Omega}cm$ and the corresponding figure of merit ($T^{10}/R_s$) is equivalent to $3.0{\times}10^{-2}{\Omega}^{-1}$. The resultant power conversion efficiency of 2.50% of the multilayer based OPV is lower than that of the reference commercial ITO. Asymmetric D/M/D multilayer is a promising transparent conducting electrode material due to its low resistivity, high transmittance, low temperature deposition and low cost components.

Fabrication of Organic Photovoltaics Using Transparent Conductive Films Based on Graphene and Metal Grid

  • Kim, Sung Man;Walker, Bright;Seo, Jung Hwa;Kang, Seong Jun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.441-441
    • /
    • 2014
  • The characteristics of hybrid conductive films based on multilayer graphene and silver grid have been investigated for the high-performance and flexible organic solar cells. The hybrid conductive films have been prepared on glass and polyethylene terephthalate (PET) substrates using conventional photolithography process and transfer process of graphene. The optical and electrical properties of prepared conductive films show transmittance of 87% at 550nm and sheet resistance of $28{\Omega}/square$. The electromechanical properties were also investigated in detail to confirm the flexibility of the hybrid films. OSCs have been fabricated on the hybrid conductive films based on graphene and silver grid on glass substrate. The power conversion efficiency of 2.38%, a fill factor of 51%, an open circuit voltage of 0.58V and a short circuit current of $8.05mA/cm^2$ were obtained from the device on glass substrate. The PCE was enhanced 11% compared with OSCs on the MLG films without silver grid.

  • PDF