Browse > Article
http://dx.doi.org/10.5012/bkcs.2012.33.9.3043

Light Scattering Amplification on Dye Sensitized Solar Cells Assembled by Hollyhock-shaped CdS-TiO2 Composites  

Lee, Ga-Young (Department of Chemistry, College of Science, Yeungnam University)
Lee, Hu-Ryul (Department of Chemistry, College of Science, Yeungnam University)
Um, Myeong-Heon (Department of Chemical Engineering, College of Engineering, Kongju National University)
Kang, Mi-Sook (Department of Chemistry, College of Science, Yeungnam University)
Publication Information
Abstract
To investigate the scattering layer effect of a $TiO_2$ multilayer in dye-sensitized solar cells (DSSCs), we designed a new DSSC system, assembled with a CdS-$TiO_2$ scattering layer electrode. A high-magnification SEM image exhibited hollyhock-like particles with a width of 1.5-2.0 ${\mu}m$ that were aggregated into 10-nm clumps in a hexagonal petal shape. The efficiency was higher in the DSSC assembled with a CdS-$TiO_2$ scattering layer than in the DSSC assembled with $TiO_2$-only layers, due to the decreased resistance in electrochemical impedance spectroscopy (EIS). The short-circuit current density ($J_{sc}$) was increased by approximately 7.26% and the open-circuit voltage ($V_{oc}$) by 2.44% over the 1.0 wt % CdS-$TiO_2$ composite scattering layer and the incident photon-to-current conversion efficiency (IPCE) in the maximum peak was also enhanced by about 5.0%, compared to the DSSC assembled without the CdS-$TiO_2$scattering layer.
Keywords
Dye-sensitized solar cells; CdS-$TiO_2$ Scattering layer; Incident photon-to-current conversion efficiency; Electrochemical impedance spectroscopy;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
1 Thongtem, T.; Phuruangrat, A.; Thongtem, S. Ceramics Inter. 2009, 35, 2817.   DOI
2 Zhong, S.; Zhang, L.; Huang, Z.; Wang, S. Appl. Surf. Sci. 2011, 257, 2599.   DOI
3 Maurya, A.; Chauhan, P. Mater. Chracterization 2011, 62, 382.   DOI   ScienceOn
4 Qingqing, W.; Gang, X.; Gaorong, H. J. Solid State Chem. 2005, 178, 2680.   DOI   ScienceOn
5 Niitsoo, O.; Sarkar, S. K.; Pejoux, C.; Rühle, S.; Cahen, D.; Hodes, G. J. Photochem. Photobiol. A: Chem. 2006, 181, 306.   DOI   ScienceOn
6 Zhu, Q.; Chen, J.; Xu, M.; Tian, S.; Pan, H.; Qian, J.; Zhou, X. Solid State Sci. 2011, 13, 1299.   DOI
7 Jiang, X.; Chen, F.; Qiu, W.; Yan, Q.; Nan, Y.; Xu, H.; Yang, L.; Chen, H. Sol. Energy Mater. Sol. Cells 2011, 94, 2223.
8 Prabakar, K.; Seo, H.; Son, M.; Kim, H. Mater. Chem. Phys. 2009, 117, 26.   DOI
9 Lee, J.-K.; Jeong, B.-H.; Jang, S.-I.; Kim, Y.-G.; Jang, Y.-W.; Lee, S.-B.; Kim, M.-R. J. Ind. Eng. Chem. 2009, 15, 724.   DOI
10 Kim, G.-O.; Kim, K.-W.; Cho, K.-K.; Ryu, K.-S. Appl. Chem. Eng. 2011, 22, 190.
11 Xiao, J.; Li, Y.; Jiang, A. J. Mater. Sci., Technol. 2011, 27, 403.   DOI
12 Chae, J.; Kang, M. J. Power Sources 2011, 196, 4143.   DOI
13 Park, N. G.; Schlichthorl, G.; can de Lagemaat, J.; Cheong, H. M.; Mascarenhas, A.; Frank, A. J. J. Phys. Chem. B 1999, 103, 3308.   DOI   ScienceOn
14 Franco, G.; Gehring, J.; Peter, L. M.; Ponomarev, E. A.; Uhlendorf, I. J. Phys. Chem. B 1999, 103, 692.   DOI
15 Schlichthorl, G.; Park, N. G.; Frank, A. J. J. Phys. Chem. B 1999, 103, 782.
16 Ni, Y.; Ma, X.; Hong, J.; Xu, Z. Mater. Lett. 2004, 58, 2754.   DOI
17 Li, C.; Yuan, J.; Han, B.; Shangguan, W. Inter. J. Hydrogen Energy 2011, 36, 4271.   DOI   ScienceOn
18 Xia, Q.; Chen, X.; Zhao, K.; Liu, J. Mater. Chem. Phys. 2008, 111, 98.   DOI
19 Thongtem, T.; Phuruangrat, A.; Thongtem, S. Mater. Lett. 2007, 61, 3235.   DOI
20 Qingqing, W.; Gaoling, Z.; Gaorong, H. Mater. Lett. 2005, 59, 2625.   DOI
21 Ghows, N.; Entezari, M. H. Ultrasonics Sonochem. 2011, 18, 629.   DOI   ScienceOn