• 제목/요약/키워드: Multilayer Perceptron Artificial Neural Network

검색결과 44건 처리시간 0.026초

Comparison of Artificial Neural Networks for Low-Power ECG-Classification System

  • Rana, Amrita;Kim, Kyung Ki
    • 센서학회지
    • /
    • 제29권1호
    • /
    • pp.19-26
    • /
    • 2020
  • Electrocardiogram (ECG) classification has become an essential task of modern day wearable devices, and can be used to detect cardiovascular diseases. State-of-the-art Artificial Intelligence (AI)-based ECG classifiers have been designed using various artificial neural networks (ANNs). Despite their high accuracy, ANNs require significant computational resources and power. Herein, three different ANNs have been compared: multilayer perceptron (MLP), convolutional neural network (CNN), and spiking neural network (SNN) only for the ECG classification. The ANN model has been developed in Python and Theano, trained on a central processing unit (CPU) platform, and deployed on a PYNQ-Z2 FPGA board to validate the model using a Jupyter notebook. Meanwhile, the hardware accelerator is designed with Overlay, which is a hardware library on PYNQ. For classification, the MIT-BIH dataset obtained from the Physionet library is used. The resulting ANN system can accurately classify four ECG types: normal, atrial premature contraction, left bundle branch block, and premature ventricular contraction. The performance of the ECG classifier models is evaluated based on accuracy and power. Among the three AI algorithms, the SNN requires the lowest power consumption of 0.226 W on-chip, followed by MLP (1.677 W), and CNN (2.266 W). However, the highest accuracy is achieved by the CNN (95%), followed by MLP (76%) and SNN (90%).

Predicting Atmospheric Concentrations of Benzene in the Southeast of Tehran using Artificial Neural Network

  • Asadollahfardi, Gholamreza;Mehdinejad, Mahdi;Mirmohammadi, Mohsen;Asadollahfardi, Rashin
    • Asian Journal of Atmospheric Environment
    • /
    • 제9권1호
    • /
    • pp.12-21
    • /
    • 2015
  • Air pollution is a challenging issue in some of the large cities in developing countries. In this regard, data interpretation is one of the most important parts of air quality management. Several methods exist to analyze air quality; among these, we applied the Multilayer Perceptron (MLP) and Radial Basis Function (RBF) methods to predict the hourly air concentration of benzene in 14 districts in the municipality of Tehran. Input data were hourly temperature, wind speed and relative humidity. Both methods determined reliable results. However, the RBF neural network performance was much closer to observed benzene data than the MLP neural network. The correlation determination resulted in 0.868 for MLP and 0.907 for RBF, while the Index of Agreement (IA) was 0.889 for MLP and 0.937 for RBF. The sensitivity analysis related to the MLP neural network indicated that the temperature had the greatest effect on prediction of benzene in comparison with the wind speed and humidity in the study area. The temperature was the most significant factor in benzene production because benzene is a volatile liquid.

후두암 감별진단에 있어 성문전도(Electroglottograph) 파라미터의 유용성 (The Effectiveness of Electroglottographic Parameters in Differential Diagnosis of Laryngeal Cancer)

  • 송인무;고의경;전경명;권순복;김기련;전계록;김광년;정동근;조철우
    • 대한후두음성언어의학회지
    • /
    • 제14권1호
    • /
    • pp.16-25
    • /
    • 2003
  • 후두암은 유병율이 높지만 조기에 발견하면 90% 이상의 치유율과 발성기능의 보존이 가능하며 현재 음성분석을 이용한 진단법이 시도되고 있으나 정립된 선별검사법은 없는 실정이다. 성문전도검사(electroglottography, EGG)는 성대의 진동양상을 알 수 있는 비침습적 검사로서 발성과 음성합성의 연구에 많이 사용되고 있다. 본 연구는 EGG에서 관찰되는 파라미터들을 다층 퍼셉트론(multilayer perceptron)구조의 신경회로망(artificial neural network)으로 감별하는 기법을 이용하여 후두암 감별법에 대한 연구로서 부산대학교병원을 내원한 후두암 환자 10명과 양성후두질환 26명을 대상으로 새로 고안한 Electroglottograph(v1.0)를 이용하여 검사하고 이의 임상적 유용성을 평가하였다. EGG 파라미터인 closed quotient(CQ), speed quotient(SQ), speed index(SI), fundamental frequency(F0), Jitter, Shimmer 등은 MATLAB 6.5 (Mathwork, Inc.)로 작성한 분석 프로그램을 이용하여 추출하였다. 각 환자에서 추출된 EGG 파라미터들을 다층 퍼셉트론 구조의 신경회로망으로 감별하였다. CQ는 각 질환군 간에 유의한 차이가 없었지만 SQ, SI, Jitter, Shimmer 등은 성대질환의 특성에 따라 유의한 차이를 보였다. 신경회로망에서 감별한 결과 CQ를 제외한 SQ, SI, Jitter, Shimmer 등에서 71.3-90%의 후두암의 감별율을 보였다. 또한 SQ, SI, Jitter, Shimmer를 3개씩 조합한 실험에서는 SQ-Jitter-Shimmer와 SQ-SI-Shimmer의 후두암의 감별율이 93%로 가장 높았고, SQ-SI-Jitter 90.9%, SI-Jitter-Shimmer 88.6%로 전체적으로 85% 이상의 높은 감별율을 나타내었다. 이러한 결과는 EGG검사와 신경회로망을 이용한 양성과 악성 후두질환의 감별이 가능함을 시사한다. 향후 성대 질환의 병태생리를 대변할 수 있는 파라미터가 추가로 개발되고 분류 알고리듬이 개선된다면 EGG를 이용한 성대질환의 감별 진단이 보다 정확해질 것으로 사료되었다.

  • PDF

에너지연산자와 신경회로망을 이용한 세포외신경신호외 검출 및 분류 (Detection and Classification of Extracellular Action Potential Using Energy Operator and Artificial Neural Network)

  • 김경환;김성준
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1998년도 추계학술대회
    • /
    • pp.207-208
    • /
    • 1998
  • Classification of extracellularly recorded action potential into each unit is an important procedure for further analysis of spike trains as point process. We utilize feedforward neural network structures, multilayer perceptron and radial basis function network to implement spike classifier. For the efficient training of classifiers, nonlinear energy operator that can trace the instantaneous frequency as well as the amplitude of the input signal is used. Trained classifiers shows successful operation, up to 90% correct classification was possible under 1.2 of signal-to-noise ratio.

  • PDF

신경회로망을 이용한 폐회로 현가장치의 시스템 모델링 (An Emphirical Closed Loop Modeling of a Suspension System using a Neural Networks)

  • 김일영;정길도;노태수;홍동표
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 추계학술대회 논문집
    • /
    • pp.384-388
    • /
    • 1996
  • The closed-loop system modeling of an Active/semiactive suspension system has been accomplished through an artificial neural Networks. The 7DOF full model as the system equation of motion has been derived and the output feedback linear quadratic regulator has been designed for the control purpose. For the neural networks training set of a sample data has been obtained through the computer simulation. A 7DOF full model with LQR controller simulated under the several road conditions such as sinusoidal bumps and the rectangular bumps. A general multilayer perceptron neural network is used for the dynamic modeling and the target outputs are feedback to the input layer. The Backpropagation method is used as the training algorithm. The modeling of system and the model validation have been shown through computer simulations.

  • PDF

Precise prediction of radiation interaction position in plastic rod scintillators using a fast and simple technique: Artificial neural network

  • Peyvandi, R. Gholipour;rad, S.Z. Islami
    • Nuclear Engineering and Technology
    • /
    • 제50권7호
    • /
    • pp.1154-1159
    • /
    • 2018
  • Precise prediction of the radiation interaction position in scintillators plays an important role in medical and industrial imaging systems. In this research, the incident position of the gamma rays was predicted precisely in a plastic rod scintillator by using attenuation technique and multilayer perceptron (MLP) neural network, for the first time. Also, this procedure was performed using nonlinear regression (NLR) method. The experimental setup is comprised of a plastic rod scintillator (BC400) coupled with two PMTs at two sides, a $^{60}Co$ gamma source and two counters that record count rates. Using two proposed techniques (ANN and NLR), the radiation interaction position was predicted in a plastic rod scintillator with a mean relative error percentage less than 4.6% and 14.6%, respectively. The mean absolute error was measured less than 2.5 and 5.5. The correlation coefficient was calculated 0.998 and 0.984, respectively. Also, the ANN technique was confirmed by leave-one-out (LOO) method with 1% error. These results presented the superiority of the ANN method in comparison with NLR and the other methods. The technique and set up used are simpler and faster than other the previous position sensitive detectors. Thus, the time, cost and shielding and electronics requirements are minimized and optimized.

지역시간지연 순환형 신경회로망을 이용한 비선형 시스템 규명 (System Identification of Nonlinear System using Local Time Delayed Recurrent Neural Network)

  • 정길도;홍동표
    • 한국정밀공학회지
    • /
    • 제12권6호
    • /
    • pp.120-127
    • /
    • 1995
  • A nonlinear empirical state-space model of the Artificial Neural Network(ANN) has been developed. The nonlinear model structure incorporates characteristic, so as to enable identification of the transient response, as well as the steady-state response of a dynamic system. A hybrid feedfoward/feedback neural network, namely a Local Time Delayed Recurrent Multi-layer Perception(RMLP), is the model structure developed in this paper. RMLP is used to identify nonlinear dynamic system in an input/output sense. The feedfoward protion of the network architecture provides with the well-known curve fitting factor, while local recurrent and cross-talk connections provides the dynamics of the system. A dynamic learning algorithm is used to train the proposed network in a supervised manner. The derived dynamic learning algorithm exhibit a computationally desirable characteristic; both network sweep involved in the algorithm are performed forward, enhancing its parallel implementation. RMLP state-space and its associate learning algorithm is demonstrated through a simple examples. The simulation results are very encouraging.

  • PDF

Slime mold and four other nature-inspired optimization algorithms in analyzing the concrete compressive strength

  • Yinghao Zhao;Hossein Moayedi;Loke Kok Foong;Quynh T. Thi
    • Smart Structures and Systems
    • /
    • 제33권1호
    • /
    • pp.65-91
    • /
    • 2024
  • The use of five optimization techniques for the prediction of a strength-based concrete mixture's best-fit model is examined in this work. Five optimization techniques are utilized for this purpose: Slime Mold Algorithm (SMA), Black Hole Algorithm (BHA), Multi-Verse Optimizer (MVO), Vortex Search (VS), and Whale Optimization Algorithm (WOA). MATLAB employs a hybrid learning strategy to train an artificial neural network that combines least square estimation with backpropagation. Thus, 72 samples are utilized as training datasets and 31 as testing datasets, totaling 103. The multi-layer perceptron (MLP) is used to analyze all data, and results are verified by comparison. For training datasets in the best-fit models of SMA-MLP, BHA-MLP, MVO-MLP, VS-MLP, and WOA-MLP, the statistical indices of coefficient of determination (R2) in training phase are 0.9603, 0.9679, 0.9827, 0.9841 and 0.9770, and in testing phase are 0.9567, 0.9552, 0.9594, 0.9888 and 0.9695 respectively. In addition, the best-fit structures for training for SMA, BHA, MVO, VS, and WOA (all combined with multilayer perceptron, MLP) are achieved when the term population size was modified to 450, 500, 250, 150, and 500, respectively. Among all the suggested options, VS could offer a stronger prediction network for training MLP.

당뇨병 예측을 위한 신경망 모델 개발에 관한연구 (Development of Diabetes Mellitus prediction model using artificial neural network)

  • 서혜숙;최진욱;김희식
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 춘계학술대회 학술발표 논문집
    • /
    • pp.67-70
    • /
    • 1998
  • There were many cases to apply artificial intelligence to medicine. In this paper, we present the prediction model of the development of the NIDDM(noninsulin-dependent diabetes mellitus). It is not difficult that doctor diagnose patient as DM(diabetes mellitus). However NIDDM is usually developmented later on 40 years old and symptom appeares gradually. So screening test or prediction model is needed absolutely. Our model predicts development of NIDDM with still normal data 2 year ago. Prediction models developed are both MLP(multilayer perceptron) with backpropagation training and RBFN(radial basis function network). Performance of both models were evaluated with likelihood ratio. MLP was about two and RBFN was about three. We expect that models developed can prevent development of DM and utilize normal data.

  • PDF

Research of the crack problem of a functionally graded layer

  • Murat Yaylaci;Ecren Uzun Yaylaci;Muhittin Turan;Mehmet Emin Ozdemir;Sevval Ozturk;Sevil Ay
    • Steel and Composite Structures
    • /
    • 제50권1호
    • /
    • pp.77-87
    • /
    • 2024
  • In this study, the two-dimensional crack problem was investigated by using the finite element method (FEM)-based ANSYS package program and the artificial neural network (ANN)-based multilayer perceptron (MLP) method. For this purpose, a half-infinite functionally graded (FG) layer with a crack pressed through two rigid blocks was analyzed using FEM and ANN. Mass forces and friction were neglected in the solution. To control the validity of the crack problem model exercised, the acquired results were compared with a study in the literature. In addition, FEM and ANN results were checked using Root Mean Square Error (RMSE) and coefficient of determination (R2), and a well agreement was found. Numerical solutions were made considering different geometric parameters and material properties. The stress intensity factor (SIF) was examined for these values, and the results were presented. Consequently, it is concluded that the considered non-dimensional quantities have a noteworthy influence on the SIF. Also FEM and ANN can be logical alternative methods to time-consuming analytical solutions if used correctly.