• 제목/요약/키워드: Multilayer Neural Network (MNN)

검색결과 8건 처리시간 0.023초

A PROPOSAL OF ENHANSED NEURAL NETWORK CONTROLLERS FOR MULTIPLE CONTROL SYSTEMS

  • Nakagawa, Tomoyuki;Inaba, Masaaki;Sugawara, Ken;Yoshihara, Ikuo;Abe, Kenichi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1998년도 제13차 학술회의논문집
    • /
    • pp.201-204
    • /
    • 1998
  • This paper presents a new construction method of candidate controllers using Multi-modal Neural Network(MNN). To improve a control performance of multiple controller, we construct, candidate controllers which consist of MNN. MNN can learn more complicated function than multilayer neural network. MNN consists of preprocessing module and neural network module. The preprocessing module transforms input signals into spectra which are used as input of the following neural network module. We apply the proposed method to multiple control system which controls the cart-pole balancing system and show the effectiveness of the proposed method.

  • PDF

Prediction of longitudinal wave speed in rock bolt coupled with Multilayer Neural Network (MNN) algorithm

  • Jung-Doung Yu;Geunwoo Park;Dong-Ju Kim;Hyung-Koo Yoon
    • Smart Structures and Systems
    • /
    • 제34권1호
    • /
    • pp.17-23
    • /
    • 2024
  • Non-destructive methods are extensively utilized for assessing the integrity of rock bolts, with longitudinal wave speed being a crucial property for evaluating rock bolt quality. This research aims to propose a method for predicting reliable longitudinal wave velocities by leveraging various properties of the rock surrounding the rock bolt. The prediction algorithm employed is the Multilayer Neural Network (MNN), and the input properties includes elastic modulus, shear wave speed, compressive strength, compressional wave speed, mass density, porosity, and Poisson's ratio, totaling seven. The implementation of the MNN demonstrates high reliability, achieving a coefficient of determination of 0.996. To assess the impact of each input property on longitudinal wave speed, an importance score is derived using the random forest algorithm, with the elastic modulus identified as having the most significant influence. When the elastic modulus is the sole input parameter, the coefficient of determination for predicting the longitudinal wave speed is observed to be 0.967. The findings of this study underscore the reliability of selecting specific properties for predicting longitudinal wave speed and suggest that these insights can assist in identifying relevant input properties for rock bolt integrity assessments in future construction site experiments.

자율분산 신경망을 이용한 비선형 동적 시스템 식별 (Identification of nonlinear dynamical systems based on self-organized distributed networks)

  • 최종수;김형석;김성중;권오신;김종만
    • 대한전기학회논문지
    • /
    • 제45권4호
    • /
    • pp.574-581
    • /
    • 1996
  • The neural network approach has been shown to be a general scheme for nonlinear dynamical system identification. Unfortunately the error surface of a Multilayer Neural Networks(MNN) that widely used is often highly complex. This is a disadvantage and potential traps may exist in the identification procedure. The objective of this paper is to identify a nonlinear dynamical systems based on Self-Organized Distributed Networks (SODN). The learning with the SODN is fast and precise. Such properties are caused from the local learning mechanism. Each local network learns only data in a subregion. This paper also discusses neural network as identifier of nonlinear dynamical systems. The structure of nonlinear system identification employs series-parallel model. The identification procedure is based on a discrete-time formulation. Through extensive simulation, SODN is shown to be effective for identification of nonlinear dynamical systems. (author). 13 refs., 7 figs., 2 tabs.

  • PDF

Deep LS-SVM for regression

  • Hwang, Changha;Shim, Jooyong
    • Journal of the Korean Data and Information Science Society
    • /
    • 제27권3호
    • /
    • pp.827-833
    • /
    • 2016
  • In this paper, we propose a deep least squares support vector machine (LS-SVM) for regression problems, which consists of the input layer and the hidden layer. In the hidden layer, LS-SVMs are trained with the original input variables and the perturbed responses. For the final output, the main LS-SVM is trained with the outputs from LS-SVMs of the hidden layer as input variables and the original responses. In contrast to the multilayer neural network (MNN), LS-SVMs in the deep LS-SVM are trained to minimize the penalized objective function. Thus, the learning dynamics of the deep LS-SVM are entirely different from MNN in which all weights and biases are trained to minimize one final error function. When compared to MNN approaches, the deep LS-SVM does not make use of any combination weights, but trains all LS-SVMs in the architecture. Experimental results from real datasets illustrate that the deep LS-SVM significantly outperforms state of the art machine learning methods on regression problems.

다중 생체신호를 이용한 신경망 기반 전산화 감정해석 (Neural-network based Computerized Emotion Analysis using Multiple Biological Signals)

  • 이지은;김병남;유선국
    • 감성과학
    • /
    • 제20권2호
    • /
    • pp.161-170
    • /
    • 2017
  • 감정은 학습능력, 행동, 판단력 등 삶의 많은 부분에 영향을 끼치므로 인간의 본질을 이해하는 데 중요한 역할을 한다. 그러나 감정은 개인이 느끼는 강도가 다르며, 시각 영상 자극을 통해 감정을 유도하는 경우 감정이 지속적으로 유지되지 않는다. 이러한 문제점을 극복하기 위하여 총 4가지 감정자극(행복, 슬픔, 공포, 보통) 시 생체신호(뇌전도, 맥파, 피부전도도, 피부 온도)를 획득하고, 이로부터 특징을 추출하여 분류기의 입력으로 사용하였다. 감정 패턴을 확률적으로 해석하여 다른 공간으로 매핑시켜주는 역할을 하는 Restricted Boltzmann Machine (RBM)과 Multilayer Neural Network (MNN)의 은닉층 노드를 이용하여 비선형적인 성질의 감정을 구별하는 Deep Belief Network (DBN) 감정 패턴 분류기를 설계하였다. 그 결과, DBN의 정확도(약 94%)는 오류 역전파 알고리즘의 정확도(약 40%)보다 높은 정확도를 가지며 감정 패턴 분류기로서 우수성을 가짐을 확인하였다. 이는 향후 인지과학 및 HCI 분야 등에서 활용 가능할 것으로 사료된다.

Radial Basis 함수 회로망을 이용한 비선형 시스템 제어기의 설계에 관한 연구 (Design of nonlinear system controller based on radial basis function network)

  • 박경훈;이양우;차득근
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.1165-1168
    • /
    • 1996
  • The neural network approach has been shown to be a general scheme for nonlinear dynamical system identification. Unfortunately the error surface of a Multilayer Neural Network(MNN) that widely used is often highly complex. This is a disadvantage and potential traps may exist in the identification procedure. The objective of this paper is to identify a nonlinear dynamical systems based on Radial Basis Function Networks(RBFN). The learning with RBFN is fast and precise. This paper discusses RBFN as identification procedure is based on a nonlinear dynamical systems. and A design method of model follow control system based on RBFN controller is developed. As a result of applying this method to inverted pendulum, the simulation has shown that RBFN can be used as identification and control of nonlinear dynamical systems effectively.

  • PDF

면역 알고리즘을 이용한 강건한 제어 시스템 설계 (On Designing a Robust Control System Using Immune Algorithm)

  • 서재용;원경재;김성현;조현찬;전홍태
    • 한국지능시스템학회논문지
    • /
    • 제8권6호
    • /
    • pp.12-20
    • /
    • 1998
  • 제어 환경의 변화에 강건하게 대처할 수 있는 제어 시스템을 개발하기 위해서, 본 논문에서는 자연계의 면역 시스템과 다층 신경망을 결합한 제어 시스템을 제안한다. 제안한 제어 시스템은 면역 알고리즘을 이용하여 다층 신경망의 가중치를 조절한다. 면역 알고리즘은 초기 방어 단계인 선천성 면역 알고리즘과 적응 단계인 적응 면역 알고리즘으로 구성되어 있다. 과거에 학습한 경험이 있는 환경과 유사한 환경에 대해서 선천성 면역 알고리즘이 동작하고, 학습한 경험이 없는 새로운 제어 환경의 변하에 대해서는 적응 면역 알고리즘이 동작한다. 면역 알고리즘을 이용한 제어 시스템을 로봇 매니퓰레이터의 궤적 추종 제어에 적용하였으며, 컴퓨터 모의 실험을 통해 제어 시스템의 성능을 평가한다.

  • PDF

계층적 신경회로망을 사용한 변속선도 결정 (Decision of Shift-map Using Hierarchical Neural Network)

  • 최인찬;전홍태
    • 전자공학회논문지SC
    • /
    • 제48권1호
    • /
    • pp.18-23
    • /
    • 2011
  • 본 연구는 자동차에 장착된 일반적인 자동변속기의 문제점을 향상시키기 위해서 지능형 변속선도 결정 모듈을 제안한다. 전형적인 자동변속기의 변속선도는 운전자의 습관 및 성향이 반영되지 않기 때문에 운전자가 원하는 변속점을 제공하지 못한다. 기존의 변속선도는 불필요한 기어의 변화가 발생하고 연료효율에도 좋지 않다. 또한 가끔 킥-다운과 같은 현상이 발생한다. 그래서 본 논문에서는 개인적인 운전자의 운전 스타일을 고려한 변속선도를 결정하는 지능형 변속 제어 방법을 연구한다. 운전스타일은 주행 중인 자동차의 실제 데이터를 이용하여 운전자의 성향 및 운전 습관에 의해 판단된다. 이 모듈은 실제 자동차 데이터를 학습하기 위해 신경회로망을 사용한 계층적 구조로 구성된다. 제안된 지능형 변속선도 제 어 모듈은 각 운전자의 운전스타일에 따라 운전에 필요한 토크와 속도를 제공하여 운전자에게 적합한 변속점과 변속시간을 제공할 수 있다.