• Title/Summary/Keyword: Multijunction solar cells

Search Result 7, Processing Time 0.021 seconds

New Generation Multijunction Solar Cells for Achieving High Efficiencies

  • Lee, Sunhwa;Park, Jinjoo;Kim, Youngkuk;Kim, Sangho;Iftiquar, S.M.;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.6 no.2
    • /
    • pp.31-38
    • /
    • 2018
  • Multijunction solar cells present a practical solution towards a better photovoltaic conversion for a wider spectral range. In this review, we compare different types of multi-ijunction solar cell. First, we introduce thin film multijunction solar cell include to the thin film silicon, III-V material and chalcopyrite material. Until now the maximum reported power conversion efficiencies (PCE) of solar cells having different component sub-cells are 14.0% (thin film silicon), 46% (III-V material), 4.4% (chalcopyrite material) respectively. We then discuss the development of multijunction solar cell in which c-Si is used as bottom sub-cell while III-V material, thin film silicon, chalcopyrite material or perovskite material is used as top sub-cells.

A Brief Study on the Fabrication of III-V/Si Based Tandem Solar Cells

  • Panchanan, Swagata;Dutta, Subhajit;Mallem, Kumar;Sanyal, Simpy;Park, Jinjoo;Ju, Minkyu;Cho, Young Hyun;Cho, Eun-Chel;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.6 no.4
    • /
    • pp.109-118
    • /
    • 2018
  • Silicon (Si) solar cells are the most successful technology which are ruling the present photovoltaic (PV) market. In that essence, multijunction (MJ) solar cells provided a new path to improve the state-of-art efficiencies. There are so many hurdles to grow the MJ III-V materials on Si substrate as Si with other materials often demands similar qualities, so it is needed to realize the prospective of Si tandem solar cells. However, Si tandem solar cells with MJ III-V materials have shown the maximum efficiency of 30 %. This work reviews the development of the III-V/Si solar cells with the synopsis of various growth mechanisms i.e hetero-epitaxy, wafer bonding and mechanical stacking of III-V materials on Si substrate. Theoretical approaches to design efficient tandem cell with an analysis of state-of-art silicon solar cells, sensitivity, difficulties and their probable solutions are discussed in this work. An analytical model which yields the practical efficiency values to design the high efficiency III-V/Si solar cells is described briefly.

Terminal Configuration and Growth Mechanism of III-V on Si-Based Tandem Solar Cell: A Review

  • Alamgeer;Muhammad Quddamah Khokhar;Muhammad Aleem Zahid;Hasnain Yousuf;Seungyong Han;Yifan Hu;Youngkuk Kim;Suresh Kumar Dhungel;Junsin Yi
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.5
    • /
    • pp.442-453
    • /
    • 2023
  • Tandem or multijunction solar cells (MJSCs) can convert sunlight into electricity with higher efficiency (η) than single junction solar cells (SJSCs) by dividing the solar irradiance over sub-cells having distinct bandgaps. The efficiencies of various common SJSC materials are close to the edge of their theoretical efficiency and hence there is a tremendous growing interest in utilizing the tandem/multijunction technique. Recently, III-V materials integration on a silicon substrate has been broadly investigated in the development of III-V on Si tandem solar cells. Numerous growth techniques such as heteroepitaxial growth, wafer bonding, and mechanical stacking are crucial for better understanding of high-quality III-V epitaxial layers on Si. As the choice of growth method and substrate selection can significantly impact the quality and performance of the resulting tandem cell and the terminal configuration exhibit a vital role in the overall proficiency. Parallel and Series-connected configurations have been studied, each with its advantage and disadvantages depending on the application and cell configuration. The optimization of both growth mechanisms and terminal configurations is necessary to further improve efficiency and lessen the cost of III-V on Si tandem solar cells. In this review article, we present an overview of the growth mechanisms and terminal configurations with the areas of research that are crucial for the commercialization of III-V on Si tandem solar cells.

Status of Low Temperature Polycrystalline Silicon Films and Solar Cells (저온 다결정 실리콘 박막 및 태양전지 연구개발동향)

  • 이정철;김석기;윤경훈;송진수;박이준
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.1113-1116
    • /
    • 2003
  • This review article gives a comprehensive compilation of recent developments in low temperature deposited poly Si flms, also known as microcrystalline silicon. The development of various ion energy suppression techniques for plasma enhanced chemical vapour deposition and ionless depositions such as HWCVD and expanding thermal plasma, and their effect on the material and solar cell efficiencies are described. A correlation between ef.ciency and the two most important process parameters, i.e., growth rate and process temperature is carried out. Finally, the application of these poly Si cells in multijunction cell structures and the best efficiencies worldwide by various deposition techniques are discussed.

  • PDF

Physics and current density-voltage characteristics of $a-Si_{1-x}Ge_x:H$ alloy p-i-n solar cells ($a-Si_{1-x}Ge_x:H$ 화합물(化合物) p-i-n 태양전지(太陽電池)의 물리(物理) 및 전류밀도(電流密度)-전압(電壓) 특성(特性))

  • Kwon, Young-Shik
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1435-1438
    • /
    • 1994
  • The effects of Ge composition variation in $a-Si_{1-x}Ge_x:H$ alloy p-i-n solar cells on the physical properties and current density-voltage characteristics are analyzed by a new simulation modelling based on the update published experimental datas. The simulation modelling includes newly formulated density of gap density spectrum corresponding to Ge composition variation and utilizes the newly derived generation rate formulars which include the reflection coefficients and can apply to multijunction structures as well as single junction structure. The effects in $a-Si_{1-x}Ge_x:H$ single junction are analyzed through the efficiency, fill factor, open circuit voltage, short circuit current density, free carriers, trap carriers, electric field, generation rate and recombination rate. Based on the results analyzed in single junction structure, the applications to multiple junction structures are discussed and the optimal conditions reaching to a high performance are investigated.

  • PDF

Effect of Growth Factors in Doping Concentration of MBE Grown GaAs for Tunnel Diode in Multijunction Solar Cell

  • Park, Gwang-Uk;Gang, Seok-Jin;Gwon, Ji-Hye;Kim, Jun-Beom;Yeo, Chan-Il;Lee, Yong-Tak
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.308-309
    • /
    • 2012
  • One of the critical issues in the growth of multijunction solar cell is the formation of a highly doped Esaki interband tunnel diode which interconnects unit cells of different energy band gap. Small electrical and optical losses are the requirements of such tunnel diodes [1]. To satisfy these requirements, tens of nanometer thick gallium arsenide (GaAs) can be a proper candidate due to its high carrier concentration in low energy band gap. To obtain highly doped GaAs in molecular beam epitaxy, the temperatures of Si Knudsen cell (K-cell) for n-type GaAs and Be K-cell for p-type GaAs were controlled during GaAs epitaxial growth, and the growth rate is set to 1.75 A/s. As a result, the doping concentration of p-type and n-type GaAs increased up to $4.7{\times}10^{19}cm^{-3}$ and $6.2{\times}10^{18}cm^{-3}$, respectively. However, the obtained n-type doping concentration is not sufficient to form a properly operating tunnel diode which requires a doping concentration close to $1.0{\times}10^{19}cm^{-3}$ [2]. To enhance the n-type doping concentration, n-doped GaAs samples were grown with a lower growth rate ranging from 0.318 to 1.123 A/s at a Si K-cell temperature of $1,180^{\circ}C$. As shown in Fig. 1, the n-type doping concentration was increased to $7.7{\times}10^{18}cm^{-3}$ when the growth rate was decreased to 0.318 A/s. The p-type doping concentration also increased to $4.1{\times}10^{19}cm^{-3}$ with the decrease of growth rate to 0.318 A/s. Additionally, bulk resistance was also decreased in both the grown samples. However, a transmission line measurement performed on the n-type GaAs sample grown at the rate of 0.318 A/s showed an increased specific contact resistance of $6.62{\times}10^{-4}{\Omega}{\cdot}cm^{-2}$. This high value of contact resistance is not suitable for forming contacts and interfaces. The increased resistance is attributed to the excessively incorporated dopant during low growth rate. Further studies need to be carried out to evaluate the effect of excess dopants on the operation of tunnel diode.

  • PDF

Study on the Characteristics of GaInP/AlGaInP Heterojunction Photovoltaic Cells under Concentrated Illumination (집광 조건에서의 GaInP/AlGaInP 이종접합 구조 태양전지 특성 연구)

  • Kim, Junghwan
    • Applied Chemistry for Engineering
    • /
    • v.30 no.4
    • /
    • pp.504-508
    • /
    • 2019
  • The feasibility of replacing the tope cell of pn GaInP homojunction with our GaInP/AlGaInP heterojunction structure in III-V semiconductor multijunction photovoltaic (MJPV) cells having the highest current conversion efficiency was investigated. The performance of photovoltaic (PV) cells grown on $2^{\circ}$ and $10^{\circ}$ off-oriented GaAs substrates were compared to each other. The PV cells on the $10^{\circ}$ off-cut substrate showed higher short-circuit current density ($J_{sc}$) and conversion efficiency values than that of using the $2^{\circ}$ one. For $2{\times}2mm^2$ area PV cell on $10^{\circ}$ off substrate, the $J_{sc}$ of $9.21mA/cm^2$ and the open-circuit voltage of 1.38 V were measured under 1 sun illumination. For $5{\times}5mm^2$ cell on $10^{\circ}$ off substrate, the conversion efficiency was decreased from 6.03% (1 sun) to 5.28% (20 sun) due to a decrease in fiill factor (FF).