• Title/Summary/Keyword: Multigrid Method

Search Result 86, Processing Time 0.017 seconds

A Study of Convergence Enhancement Using Preconditioning Methods at Two Dimensional Compressible Low Speed Flows (저속 압축성 유동에서 예조건화 방법을 이용한 수렴성 증진에 대한 연구)

  • Lee J. E.;Park S. H.;Kwon J. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.7-14
    • /
    • 2004
  • It is well known that preconditioning methods are efficient for convergence acceleration at compressible low Mach number flows. In this study, the original Euler equations and three preconditioners nondimensionalized differently are implemented in two dimensional inviscid bump flows using the 3rd order MUSCL and DADI schemes as flux discretization and time integration respectively. The multigrid and local time stepping methods are also used to accelerate the convergence. The test case indicates that a properly modified local preconditioning technique involving concepts of a global preconditioning one produces Mach number independent convergence. Besides, an asymptotic analysis for properties of preconditioning methods is added.

  • PDF

Multilevel acceleration of scattering-source iterations with application to electron transport

  • Drumm, Clif;Fan, Wesley
    • Nuclear Engineering and Technology
    • /
    • v.49 no.6
    • /
    • pp.1114-1124
    • /
    • 2017
  • Acceleration/preconditioning strategies available in the SCEPTRE radiation transport code are described. A flexible transport synthetic acceleration (TSA) algorithm that uses a low-order discrete-ordinates ($S_N$) or spherical-harmonics ($P_N$) solve to accelerate convergence of a high-order $S_N$ source-iteration (SI) solve is described. Convergence of the low-order solves can be further accelerated by applying off-the-shelf incomplete-factorization or algebraic-multigrid methods. Also available is an algorithm that uses a generalized minimum residual (GMRES) iterative method rather than SI for convergence, using a parallel sweep-based solver to build up a Krylov subspace. TSA has been applied as a preconditioner to accelerate the convergence of the GMRES iterations. The methods are applied to several problems involving electron transport and problems with artificial cross sections with large scattering ratios. These methods were compared and evaluated by considering material discontinuities and scattering anisotropy. Observed accelerations obtained are highly problem dependent, but speedup factors around 10 have been observed in typical applications.

A Comparative Study on Similarity of Flow Fields Reconstructed by VIC# Data Assimilation Method (VIC# 자료동화 기법을 통해 재구축된 유동장의 상사성에 관한 비교 연구)

  • Jeon, Young Jin
    • Journal of the Korean Society of Visualization
    • /
    • v.16 no.2
    • /
    • pp.23-30
    • /
    • 2018
  • The present study compares flow fields reconstructed by data assimilation method with different combinations of parameters. As a data assimilation method, Vortex-in-Cell-sharp (VIC#), which supplements additional constraints and multigrid approximation to Vortex-in-Cell-plus (VIC+), is used to reconstruct flow fields from scattered particle tracks. Two parameters, standard deviation of Gaussian radial basis function (RBF) and grid spacing, are mainly tested using artificial data sets which contain few particle tracks. Consequent flow fields are analyzed in terms of flow structure sizes. It is demonstrated that sizes of the flow structures are proportional to an actual scale of the standard deviation of RBF. It implies that a combination of larger grid spacing and smaller standard deviation which preserves the actual standard deviation is able to save computational resources in case of a low track density. In addition, a simple comparison using an experimental data filled with dense particle tracks is conducted.

COMPARISON OF DIFFERENT NUMERICAL SCHEMES FOR THE CAHN-HILLIARD EQUATION

  • Lee, Seunggyu;Lee, Chaeyoung;Lee, Hyun Geun;Kim, Junseok
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.17 no.3
    • /
    • pp.197-207
    • /
    • 2013
  • The Cahn-Hilliard equation was proposed as a phenomenological model for describing the process of phase separation of a binary alloy. The equation has been applied to many physical applications such as amorphological instability caused by elastic non-equilibrium, image inpainting, two- and three-phase fluid flow, phase separation, flow visualization and the formation of the quantum dots. To solve the Cahn-Hillard equation, many numerical methods have been proposed such as the explicit Euler's, the implicit Euler's, the Crank-Nicolson, the semi-implicit Euler's, the linearly stabilized splitting and the non-linearly stabilized splitting schemes. In this paper, we investigate each scheme in finite-difference schemes by comparing their performances, especially stability and efficiency. Except the explicit Euler's method, we use the fast solver which is called a multigrid method. Our numerical investigation shows that the linearly stabilized stabilized splitting scheme is not unconditionally gradient stable in time unlike the known result. And the Crank-Nicolson scheme is accurate but unstable in time, whereas the non-linearly stabilized splitting scheme has advantage over other schemes on the time step restriction.

A Study on Convergence Enhancement Using Preconditioning Methods in Compressible Low Speed Flows (저속 압축성 유동에서 예조건화 방법을 이용한 수렴성 증진에 대한 연구)

  • Lee, Jae-Eun;Park, Soo-Hyung;Kwon, Jang-Hyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.8
    • /
    • pp.8-17
    • /
    • 2005
  • It is well known that preconditioning methods are efficient for convergence acceleration in the compressible low Mach number flows. In this study, the original Euler equations and three differently nondimensionalized preconditioning methods are implemented in two dimensional inviscid bump flows using the 3rd order MUSCL and DADI schemes as numerical flux discretization and time integration, respectively. The multigrid and local time stepping methods are also used to accelerate the convergence. The test case indicates that a properly modified local preconditioning technique involving concepts of a global preconditioning allows Mach number independent convergence. Besides, an asymptotic analysis for properties of preconditioning methods is added.

An algebraic multigrids based prediction of a numerical solution of Poisson-Boltzmann equation for a generation of deep learning samples (딥러닝 샘플 생성을 위한 포아즌-볼츠만 방정식의 대수적 멀티그리드를 사용한 수치 예측)

  • Shin, Kwang-Seong;Jo, Gwanghyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.2
    • /
    • pp.181-186
    • /
    • 2022
  • Poisson-Boltzmann equation (PBE) is used to model problems arising from various disciplinary including bio-pysics and colloid chemistry. Therefore, to predict a numerical solution of PBE is an important issue. The authors proposed deep learning based methods to solve PBE while the computational time to generate finite element method (FEM) solutions were bottlenecks of the algorithms. In this work, we shorten the generation time of FEM solutions in two directions. First, we experimentally find certain penalty parameter in a bilinear form. Second, we applied algebraic multigrids methods to the algebraic system so that condition number is bounded regardless of the meshsize. In conclusion, we have reduced computation times to solve algebraic systems for PBE. We expect that algebraic multigrids methods can be further employed in various disciplinary to generate deep learning samples.