• Title/Summary/Keyword: Multidrug-resistance

Search Result 385, Processing Time 0.026 seconds

Overcoming multidrug resistance by activating unfolded protein response of the endoplasmic reticulum in cisplatin-resistant A2780/CisR ovarian cancer cells

  • Jung, Euitaek;Koh, Dongsoo;Lim, Yoongho;Shin, Soon Young;Lee, Young Han
    • BMB Reports
    • /
    • v.53 no.2
    • /
    • pp.88-93
    • /
    • 2020
  • Cisplatin is a widely used anti-cancer agent. However, the effectiveness of cisplatin has been limited by the commonly developed drug resistance. This study aimed to investigate the potential effects of endoplasmic reticulum (ER) stress to overcome drug resistance using the cisplatin-resistant A2780/CisR ovarian cancer cell model. The synthetic chalcone derivative (E)-3-(3,5-dimethoxyphenyl)-1-(2-methoxyphenyl)prop-2-en-1-one (named DPP23) is an ER stress inducer. We found that DPP23 triggered apoptosis in both parental cisplatin-sensitive A2780 and cisplatin-resistant A2780/CisR ovarian cancer cells due to activation of reactive oxygen species (ROS)-mediated unfolded protein response (UPR) pathway in the endoplasmic reticulum. This result suggests that ROS-mediated UPR activation is potential in overcoming drug resistance. DPP23 can be used as a target pharmacophore for the development of novel chemotherapeutic agents capable of overcoming drug resistance in cancer cells, particularly ovarian cancer cells.

Monitoring antimalarial drug-resistance markers in Somalia

  • Abdifatah Abdullahi Jalei;Kesara Na-Bangchang;Phunuch Muhamad;Wanna Chaijaroenkul
    • Parasites, Hosts and Diseases
    • /
    • v.61 no.1
    • /
    • pp.78-83
    • /
    • 2023
  • The use of an effective antimalarial drug is the cornerstone of malaria control. However, the development and spread of resistant Plasmodium falciparum strains have placed the global eradication of malaria in serious jeopardy. Molecular marker analysis constitutes the hallmark of the monitoring of Plasmodium drug-resistance. This study included 96 P. falciparum PCR-positive samples from southern Somalia. The P. falciparum chloroquine resistance transporter gene had high frequencies of K76T, A220S, Q271E, N326S, and R371I point mutations. The N86Y and Y184F mutant alleles of the P. falciparum multidrug resistance 1 gene were present in 84.7 and 62.4% of the isolates, respectively. No mutation was found in the P. falciparum Kelch-13 gene. This study revealed that chloroquine resistance markers are present at high frequencies, while the parasite remains sensitive to artemisinin (ART). The continuous monitoring of ART-resistant markers and in vitro susceptibility testing are strongly recommended to track resistant strains in real time.

Molecular Characterization and Antimicrobial Susceptibility of Biofilm-forming Acinetobacter baumannii Clinical Isolates from Daejeon, Korea (대전지역에서 분리된 생물막 형성 Acinetobacter baumannii 임상분리주의 분자유전학적 특성과 항균제 감수성양상)

  • Sung, Ji Youn
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.50 no.2
    • /
    • pp.100-109
    • /
    • 2018
  • The emergence and dissemination of multidrug-resistant (MDR) Acinetobacter baumannii isolates have been reported worldwide, with most of these possessing the ability to form biofilms. Biofilm formation is an important virulence factor associated with the resistance to disinfection and desiccation. This study examined the genetic basis of antimicrobial resistance mechanisms of biofilm-forming A. baumannii clinical isolates. Imaging and quantification of biofilms were performed by a crystal violet assay and 46 biofilm-forming A. baumannii isolates were selected. Subsequently, 16 isolates belonging to different clones were identified using REP-PCR, and detection of the antimicrobial determinants in the isolates was carried out. The 16 isolates included 9 non-MDR and 7 MDR isolates. The mean biomass $OD_{560}$ values of the non-MDR (0.96) and MDR (1.05) isolates differed but this difference was not significant. In this study, most biofilm-forming MDR A. baumannii isolates contained various antimicrobial resistance determinants ($bla_{OXA-23}$, armA, and mutations of gyrA and parC). On the other hand, most biofilm-forming non-MDR A. baumannii isolates did not contain antimicrobial resistance determinants. These results suggest that there is little correlation between the biofilm-forming ability and antimicrobial susceptibility in A. baumannii isolates. In addition, the emergence of MDR A. baumannii clinical isolates is generally caused by mutations of the genes associated with antimicrobial resistance and/or the acquisition of various antimicrobial resistance determinants.

Multidrug Resistance in Cancer Chemotherapy (항암화학 요법에서의 다제내성)

  • Kim, J.H.
    • Journal of Yeungnam Medical Science
    • /
    • v.13 no.1
    • /
    • pp.11-21
    • /
    • 1996
  • 항암치료에 있어 내성기전은 암세포의 종류에 따라 다양하며 동일세포라도 내성이 생긴 항암제에 따라 그 기능이 다른 것으로 보고되고 있으며 세포종류 및 항암제에 따른 각각의 내성기전을 완전히 알기란 그리 쉬운 일이 아니다. 그러나 임상치료에 있어서 항암제의 적용은 대개 내성 생성이 잘 안되는 즉 교차내성이 적게 일어나는 약제끼리의 선택이 화학요법에 유리하며 재발방지의 지표가 될 수 있으며 내성억제가 가능한 약제의 개발이 중요하다. 또 암에 따른 정확한 내성기전을 잘 밝힘으로서 내성을 방지할 수 있는 target 약제를 함께 병용 개발하는 것이 암의 치료의 지름길이 될 수 있다.

  • PDF

Synthesis and Biological Evaluation of Decursin, Prantschimgin and Their Derivatives

  • Xia, Yan;Min, Kyung-Hoon;Lee, Kyeong
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.1
    • /
    • pp.43-48
    • /
    • 2009
  • The synthesis of coumarin-based natural products and their derivatives is described. In vitro MDR reversal activities of the synthesized compounds were evaluated in P-glycoprotein over-expressing human sarcoma cell line MES-SA/DX5. Some of the coumarin derivatives were found to show potent MDR reversal activity. In particular, pyridyl derivative (15e) exhibited more potency than verapamil.