• 제목/요약/키워드: Multidrug resistance

검색결과 376건 처리시간 0.021초

Isolation of a Multidrug Resistance Inhibitor from Aconitum pseudo-laeve var. erectum

  • Kim, Dae-Keun;Kwon, Hyog-Young;Lee, Kang-Ro;Rhee, Dong-Kwon;Zee, Ok-Pyo
    • Archives of Pharmacal Research
    • /
    • 제21권3호
    • /
    • pp.344-347
    • /
    • 1998
  • To overcome multidrug resistance (MDR) in cancer chemotherapy, we prepared various plant extracts and searched for a component which is effective for inhibition of MDR. MDR inhibition activity was determined by measuring cytotoxicity to MDR cells using multidrug resistant human fibrocarcinoma KB V20C, which is resistant to 20 nM vincristine and expresses high level of mdr1 gene. Of various plant extracts, the MeOH extract of the root of Aconitum pseudo-laeve var. erectum was found to have potent inhibitory activity on MDR. The bioassayguided fractionation of the MeOH extract of the plant led to the isolation of an alkaloid, lycaconitine, as an active principle. And the $IC_{50}$ of lycaconitne for KB V20C cells was $74\mu{g}$/ml.

  • PDF

Effects of Ginseng Saponin on Modulation of Multidrug Resistance

  • Park, Jong-Dae;Kim, Dong-Sun;Kwon, Hyeok-Young;Son, Sang-Kwon;Lee, You-Hui;Baek, Nam-In;Kim, Shin-Il;Lee, Dong-Kwon
    • Archives of Pharmacal Research
    • /
    • 제19권3호
    • /
    • pp.213-218
    • /
    • 1996
  • Multidrug resistance (MDR) has been a major problem in cancer chemotherapy. To overcome this problem, we prepared minor ginsenosides stereoselectively from ginseng saponins and searched for a ginseng component which is effective for inhibition of MDR. MDR inhibition activity was determined by measuring cytotoxicity to MDR cells using multidrug resistant human fibrocarcinoma KB V20C, which is resistant to 20 nM vincristine and expresses high level of mdr1 gene. Of several ginseng components, 20(S)-ginsenoside Rg_3$, a red ginseng saponin, was found to have the most potent inhibitory activity on MDR and it's concentration capable of inhibiting 50% growth was $82\muM$.

  • PDF

KB 암세포에 효과있는 Streptomyces plicotosporus가 생산하는 항암증강물질 Rubiginone $B_2$ 에 관한 연구 (Rubiginone $B_2$, Isotetracenone Antibiotics which Reverses Multidrug-Resistance in KB Tumor Cells)

  • 하상철;홍순덕
    • 한국미생물·생명공학회지
    • /
    • 제22권5호
    • /
    • pp.491-494
    • /
    • 1994
  • Antibiotic HS-2 was purified from the culture broth of Streptomyces plicatosporus which was isolated from soil, by solvent extraction, silica gel column chromatography and gel filtration. Through the analysis of UV, $^{1}$H-NMR, $^{13}$C-NMR spectrum, HS-2 was identified as rubiginone B$_{2}$. It was confirmed that HS-2 enhanced the cytotoxicity of colchicine against multidrug-resistant tumor cells.

  • PDF

Cellular and regional specific changes in multidrug efflux transporter expression during recovery of vasogenic edema in the rat hippocampus and piriform cortex

  • Kim, Yeon-Jo;Kim, Ji-Eun;Choi, Hui-Chul;Song, Hong-Ki;Kang, Tae-Cheon
    • BMB Reports
    • /
    • 제48권6호
    • /
    • pp.348-353
    • /
    • 2015
  • In the present study, we investigated the characteristics of drug efflux transporter expressions following status epilepticus (SE). In the hippocampus and piriform cortex (PC), vasogenic edema peaked 3-4 days after SE. The expression of breast cancer resistance protein (BCRP), multidrug resistance protein-4 (MRP4), and p-glycoprotein (p-GP) were decreased 4 days after SE when vasogenic edema was peaked, but subsequently increased 4 weeks after SE. Multidrug resistance protein-1 (MRP1) expression gradually decreased in endothelial cells until 4 weeks after SE. These findings indicate that SE-induced vasogenic edema formation transiently reduced drug efflux pump expressions in endothelial cells. Subsequently, during recovery of vasogenic edema drug efflux pump expressions were differentially upregulated in astrocytes, neuropils, and endothelial cells. Therefore, we suggest that vasogenic edema formation may be a risk factor in pharmacoresistent epilepsy. [BMB Reports 2015; 48(6): 348-353]

AcrAB-TolC, a major efflux pump in Gram negative bacteria: toward understanding its operation mechanism

  • Soojin Jang
    • BMB Reports
    • /
    • 제56권6호
    • /
    • pp.326-334
    • /
    • 2023
  • Antibiotic resistance (AR) is a silent pandemic that kills millions worldwide. Although the development of new therapeutic agents against antibiotic resistance is in urgent demand, this has presented a great challenge, especially for Gram-negative bacteria that have inherent drug-resistance mediated by impermeable outer membranes and multidrug efflux pumps that actively extrude various drugs from the bacteria. For the last two decades, multidrug efflux pumps, including AcrAB-TolC, the most clinically important efflux pump in Gram-negative bacteria, have drawn great attention as strategic targets for re-sensitizing bacteria to the existing antibiotics. This article aims to provide a concise overview of the AcrAB-TolC operational mechanism, reviewing its architecture and substrate specificity, as well as the recent development of AcrAB-TolC inhibitors.

L1210 암세포에서 Multidrug Resistance-associated Protein (MRP), c-myc 및 c-fos 유전자의 발현양상 (Expression of Multidrug Resistance-associated Protein (MRP), c-myc and c-fos in L1210 Cells)

  • 김성용
    • Journal of Yeungnam Medical Science
    • /
    • 제14권1호
    • /
    • pp.67-76
    • /
    • 1997
  • 항암제에 대한 내성은 내인성 또는 획득한 내성 모두가 암의 치료에 장애가 된다. P-당단백질을 encode하고있는 mdr1 유전자의 발현이 항암제에 대해 내성을 가지고 있는 암세포에서 많이 관찰되고 있으며, 최근에는 시험관적으로 항암제에 대한 내성이 유도된 암세포주들에서 mdr1 유전자가 발현되지 않는 암세포들이 보고되고 있다. 다제내성에 관계하는 또 하나의 유전자인 MRP 발현정도를 L1210세포와 내성인 L1210변이주들에서 조사하였으며, c-myc과 c-fos 유전자의 발현변화를 관찰하였다. RT-PCR을 시행하여 L1210, L1210AdR, L1210VcR에서 MRP 유전자발현을 확인하였으며, Northern hybridization한 결과 L1210세포에 비하여 L1210AdR은 유전자 발현이 40% 정도 감소하였으며, L12l0Cis는 90% 정도의 유전자 발현감소가 관찰되었다. c-myc과 c-fos유전자의 Northern hybridization한 결과 L1210에 비하여 L1210AdR은 발현감소가 나타났으나, L1210VcR과 L1210Cis의 경우는 오히려 발현증가가 관찰되었다.

  • PDF

RNAi-based Knockdown of Multidrug Resistance-associated Protein 1 is Sufficient to Reverse Multidrug Resistance of Human Lung Cells

  • Shao, Shu-Li;Cui, Ting-Ting;Zhao, Wei;Zhang, Wei-Wei;Xie, Zhen-Li;Wang, Chang-He;Jia, Hong-Shuang;Liu, Qian
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권24호
    • /
    • pp.10597-10601
    • /
    • 2015
  • Up-regulation of multidrug resistance-associated protein 1 (MRP1) is regarded as one of the main causes for multidrug resistance (MDR) of tumor cells, leading to failure of chemotherapy-based treatment for a multitude of cancers. However, whether silencing the overexpressed MRP1 is sufficient to reverse MDR has yet to be validated. This study demonstrated that RNAi-based knockdown of MRP1 reversed the increased efflux ability and MDR efficiently. Two different short haipin RNAs (shRNAs) targeting MRP1 were designed and inserted into pSilence-2.1-neo. The shRNA recombinant plasmids were transfected into cis-dichlorodiamineplatinum-resistant A549 lung (A549/DDP) cells, and then shRNA expressing cell clones were collected and maintained. Real time PCR and immunofluorescence staining for MRP1 revealed a high silent efficiency of these two shRNAs. Functionally, shRNA-expressing cells showed increased rhodamine 123 retention in A549/DDP cells, indicating reduced efflux ability of tumor cells in the absence of MRP1. Consistently, MRP1-silent cells exhibited decreased resistance to 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) and DDP, suggesting reversal of MDR in these tumor cells. Specifically, MRP1 knockdown increased the DDP-induced apoptosis of A549/DDP cells by increased trapping of their cell cycling in the G2 stage. Taken together, this study demonstrated that RNAi-based silencing of MRP1 is sufficient to reverse MDR in tumor cells, shedding light on possible novel clinical treatment of cancers.

L-glutamine:D-fructose-6-phosphate Aminotransferase as a Key Protein Linked to Multidrug Resistance in E. coli KD43162

  • Lee, Sung-Eun;Jung, Tae-Jeon;Park, Byeoung-Soo;Kim, Byung-Woo;Lee, Eun-Woo;Kim, Hye Jin;Yum, Jong Hwa
    • Journal of Applied Biological Chemistry
    • /
    • 제58권3호
    • /
    • pp.227-232
    • /
    • 2015
  • A microarray study has been employed to understand changes of gene expression in E. coli KD43162 resistant to ampicillin, ampicillin-sulbactam, piperacillin, piperacillin-tazobactam, cefazolin, cefepime, aztreonam, imipenem, meropenem, gentamicin, tobramycin, ciprofloxacin, levofloxacin, moxifloxacin, fosfomycin, and trimethoprim-sulfamethoxazole except for amikacin using disk diffusion assay. Using Sodium dodecyl sulphate-polyacrylamide gel electrophoresis and MALDI-TOF MS analyses, 36 kDa of outer membrane proteins (OMPs) was found to be deleted in the multidrug resistant E. coli KD 43162. Microarray analysis was used to determine up- and down-regulated genes in relation to multidrug resistant E. coli KD43162. Among the up-regulated genes, these genes were corresponded to express the proteins as penicillin-binding proteins (PBPs), tartronate semialdehyde reductase, ethanolamine utilization protein, shikimate kinase I, allantoinase, predicted SAM-dependent methyltransferase, L-glutamine: D-fructose-6-phosphate aminotransferase (GFAT), phospho-glucosamine mutase, predicted N-acetylmannosamine kinase, and predicted N-acetylmannosamine-6-P epimerase. Up-regulation of PBPs, one of primary target sites of antibiotics, might be responsible for the multidrug resistance in E. coli with increasing amount of target sites. Up-regulation of GFAT enzyme may be related to the up-regulation of PBPs because GFAT produces N-acetylglucosamine, a precursor of peptidoglycans. One of GFAT inhibitors, azaserine, showed a potent inhibition on the growth of E. coli KD43162. In conclusion, up-regulation of PBPs and GFATs with the loss of 36 kDa OMP refers the multidrug resistance in E. coli KD 43162.

Multidrug resistance of coagulase-negative staphylococci isolated from rescued wild animals

  • Rhim, Haerin;Kim, Hong-Cheul;Na, Ki-Jeong;Han, Jae-Ik
    • 한국동물위생학회지
    • /
    • 제42권4호
    • /
    • pp.251-255
    • /
    • 2019
  • Wildlife is a bio-indicator of environmental pollution by antimicrobial resistant bacteria or genes, however, there is no information on antimicrobial resistance in wildlife-origin bacteria. This study aimed to investigate the normal microbiota of staphylococci and their antimicrobial resistance in wildlife that did not take any antimicrobials. After sampling and bacterial isolation/identification, antimicrobial resistance profiles were examined by broth microdilution test, Kirby-Bauer disc diffusion test and mecA genetargeted PCR. Of 90 isolates from wildlife, 83 were coagulase-negative staphylococci while only 7 were coagulase-positive staphylococci. Methicillin-resistance was found in 63 (70%) isolates and 35 of 90 (38.9%) isolates were multidrug-resistant staphylococci. When considering that all of the animals did not take any medication or contacted any medical device before the sampling, the results indicate significantly high prevalence of antimicrobial resistance in wild environments. Further study would be necessary to investigate the transmission route of antimicrobial resistance.

Gene Cloning and Characterization of MdeA, a Novel Multidrug Efflux Pump in Streptococcus mutans

  • Kim, Do Kyun;Kim, Kyoung Hoon;Cho, Eun Ji;Joo, Seoung-Je;Chung, Jung-Min;Son, Byoung Yil;Yum, Jong Hwa;Kim, Young-Man;Kwon, Hyun-Ju;Kim, Byung-Woo;Kim, Tae Hoon;Lee, Eun-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권3호
    • /
    • pp.430-435
    • /
    • 2013
  • Multidrug resistance, especially multidrug efflux mechanisms that extrude structurally unrelated cytotoxic compounds from the cell by multidrug transporters, is a serious problem and one of the main reasons for the failure of therapeutic treatment of infections by pathogenic microorganisms as well as of cancer cells. Streptococcus mutans is considered one of the primary causative agents of dental caries and periodontal disease, which comprise the most common oral diseases. A fragment of chromosomal DNA from S. mutans KCTC3065 was cloned using Escherichia coli KAM32 as host cells lacking major multidrug efflux pumps. Although E. coli KAM32 cells were very sensitive to many antimicrobial agents, the transformed cells harboring a recombinant plasmid became resistant to several structurally unrelated antimicrobial agents such as tetracycline, kanamycin, rhodamin 6G, ampicillin, acriflavine, ethidium bromide, and tetraphenylphosphonium chloride. This suggested that the cloned DNA fragment carries a gene encoding a multidrug efflux pump. Among 49 of the multidrug-resistant transformants, we report the functional gene cloning and characterization of the function of one multidrug efflux pump, namely MdeA from S. mutans, which was expressed in E. coli KAM32. Judging from the structural and biochemical properties, we concluded that MdeA is the first cloned and characterized multidrug efflux pump using the proton motive force as the energy for efflux drugs.