L1210 암세포에서 Multidrug Resistance-associated Protein (MRP), c-myc 및 c-fos 유전자와의 발현양상

영남대학교 의과대학 생화학교실
김 성 용

서 론

MRP는 190 kD의 크기를 가지며 그 기능이 명확히 밝혀지지는 않았으나 170 kD 크기의 P-당단백질과 유사하게 ATP-binding cassette(ABC) superfamily에 속하는 세포 외접막의 transport 단백질로 알려져 있으며(Cole 등, 1992), 사람의 정상 조직에서는 신장, 근육, 세장, 폐 등에 분포하고 있다. 그러나 P-당단백질과는 다르게 간에서는 발현되지 않는다고 보고되어 있다(Sugawara 등, 1997).

Kim과 Kim(1994), 김정희 등(1991)에 의해 생쥐의 백혈병 세포주인 L1210로부터 adriamycin,
vincristine, cisplatin 등 각각의 항암제에 대한 내성 세포주 L1210AdR, L1210VcR 및 L1210Cis 등을 확립되었다. 그러나 L1210AdR과 L1210VcR의 경우는 mdr1 gene이 과발현되었으나, L1210Cis 내성세포주에는 mdr1 gene이 과발현되어 있지 않음이 관찰되었다.

따라서 본 연구에서는 다세대성에 관계되는 또 하나의 유전자인 MRP 발현 정도를 L1210세포와 L1210 다세대성 변이주들에서 조사하였으며, 정상 세포에서 암세포로 진행될 때 과발현되는 c-myc과 c-fos 유전자들이 내성세포에서 어떻게 발현되어 있는지를 조사하였다.

재료 및 방법

실험재료

생쥐의 백혈병세포 L1210은 American Type Cultural Collection (ATCC)로부터 구입하였으며, 내성 세포주는 Kim과 Kim(1994), 김정희 등(1991)에 의해 이미 내성이 유도되어 그 특징이 밝혀진 L1210AdR, L1210VcR 및 L1210Cis를 사용하였다. Iron supplemented bovine serum은 Hyclone사, Fischer 배양액은 Gibco사 제품을 사용하였고, 항암제는 adriamycin, vincristine, 및 cisplatin을 사용하였다. MTT(3-[4,5-di-methyl-thiazol-2-yl]-2,5-diphenyltetrazolium bromide; thiazolyl blue)와 dimethylsulfoxide(DMSO)는 Sigma사 제품을 사용하였다.

MRP의 RT-PCR(reverse-transcriptase polymerase chain reaction)을 위해 Perkin Elmer사(USA)의 RNA PCR kit를 사용하였으며 primer는 (주)바이오 니아로부터 구입하여 사용하였다. 전기영동한 agarose gel에서 cDNA를 용출하기 위하여 Qiagen 사의 QIAquick Gel Extraction kit를 사용하였다.

Nick translation kit은 Boehringer Mannheim사의 제품을 그리고 α-32P-dCTP와 nitrocellulose membrane은 Amersham사의 제품을 사용하였다.

그 외의 일반 시약들은 시판 특급시약을 사용하였다.

실험방법

1) 세포의 배양 및 유지

L1210 및 adriamycin 내성 L1210 변이주(L1210AdR), vincristine 내성 L1210 변이주(L1210VcR) 및 cisplatin 내성 L1210 변이주(L1210Cis)를 10% iron supplemented bovine serum과 50 μg/ml gentamycin이 포함된 RPMI1640 medium을 배양액으로 하여 37 ℃, 5% 이산화탄소 배양기에서 배양하였다. L1210AdR, L1210VcR, L1210Cis 세포들은 각 항암제에 대한 내성을 유지하기 위하여 배양액에 각각 adriamycin을 10 μM, vincristine을 1 μM, cisplatin을 10 μM씩 첨가하여 배양하였다.

2) RNA의 추출

RNA의 추출은 Chomczynski 와 Sacchi(1987)의 acid guanidinium thiocyanate-phenol-chloroform 추출법을 이용하였다. 세포들은 1×10⁶ cells/ml 되게 한 후 1.5 ml 미세원심분리관으로 옮긴 다음 15,000 rpm에서 1 분간 원심분리하였다. 상정액을 버리고 남은 용액에 세포를 분산시킨 후 번성용액 (4 M guanidinium thiocyantate, 25 mM sodium citrate, pH 7.0, 0.5% sarcosyl, 0.1 M 2-mercaptoethanol) 0.5 ml와 2 M sodium acetate (pH 4.2) 50 μl 및 water-saturated phenol 0.5 ml를 넣고 섞은 후 0.1 ml의 chloroform을 가하여 30 초간 진탕시켰다. 얼음속에 15 분간 방치한 후 4 ℃, 15,000 rpm에서 15 분간 원심분리하였다. 수용액을 조심스럽게 다른 시험관에 옮기고 동량의 isopropyl alcohol을 넣고 -70 ℃에 45 분간 방치한
후 다시 원심분리하여 첨가물을 70% 에탄올로 세척하고 diethyl pyrocarbonate(DEPC) 처리한 중류수로 RNA를 녹였다.

3) MRP의 RT-PCR

MRP의 RT-PCR을 위한 primer들의 염기서열은 다음과 같다.

5' primer(5'-GTCTTCAAGGATCATGCTC-3')
3' primer(5'-GCCGATCCCTCTTCCAGGTT-3')

RT-PCR은 10X PCR 완충액 1 µl, 25 mM MgCl2, 2 µl, 10 mM dNTP 혼합액 4 µl, 20 U/µl RNase inhibitor 0.5 µl, 50 U/µl MuLV RTase 0.5 µl, 3' primer를 0.75 µM되도록, 그리고 RNA 1 µg을 넣은 후 DEPC 처리한 중류수로 전처리가 10 µl되도록 하였다. 실험에서 10 분동안 방치하고 40 ℃에서 30 분 반응시켰다. 여기에 다시 10X PCR 완충액 4 µl, 25 mM MgCl2, 2 µl, 4 U/µl Ampli Taq 0.25 µl, 5' primer를 0.75 µM 되도록 넣은 후 중류수로 40 µl되도록 하였다. 처음 94 ℃에서 2 분간 변성시킨 후, 94 ℃에서 1 분, 60 ℃에서 1 분, 72 ℃에서 1 분의 반응주기를 40 회 반복하고 마지막으로 72 ℃에서 10 분간 반응시켰다.

4) MRP, c-myc, c-fos 유전자들의 발현조사

탑식자 제작은 Rigby 등(1977)의 nick translation방법을 이용하여 α-32P-dCTP를 표시하여 제작하였고, 사용한 cDNA들중 c-myc과 c-fos 유전자 제해효소로 반응시킨 plasmid로부터 분리하여 이용하였으며, MRP는 RT-PCR 생성물을 agarose gel에서 전기영동한 gel로부터 오려내어 cDNA를 송출시켜 사용하였다. dNTP(dCTP제외) 혼합액 3 µl, 10X 완충액 2 µl, 효소 혼합액 2 µl, α-32P-dCTP 20 µCi를 넣고 DNA를 100 ng 넣었다. 전체가 20 µl가 되어 중류수를 넣은 후 15 ℃에서 35 분간 반응시켰다. Sephadex G50으로 gel filtration 하여 유리 동위원소와 탑식자를 분리한 후 hybridization에 사용하였다.

Northern hybridization은 내성세포들과 모세포에서 분리한 RNA 30 µg를 0.8% formaldehyde agarose gel에서 전기영동하였다. 전기영동 후 gel을 중류수에 15 분간 갯으로 4 번, 10X SSC에 45 분 담가두 후 20X SSC(1.5 M NaCl, 0.15 M sodium citrate) 용액으로 capillary transfer 밑을 이용하여 RNA를 nitrocellulose membrane으로 옮겼다. RNA 가 옮겨진 membrane을 80 ℃에서 2 시간 구운 후 hybridization 용액(5X SSC, 50% formamide, 5X Denhardt's solution, 0.1% SDS, 200 µg/ml salmon sperm DNA)에 담근 후 42 ℃에서 반복한 prehybridization 시켰다. 32P가 표지된 탑식자를 100 ℃에서 5 분간 끓여 변성시킨 후 hybridization 용액(10% dextran sulfate in hybridization 용액과 섞고 42 ℃에서 24 시간 hybridization 시켰다. Hybridization 시간 막을 1X SSC, 0.1% SDS 용액에 15 분간 셋고 0.1X SSC, 0.1% SDS 용액에 15 분간 2 번 세척한 후 X-ray 필름에 감광시켰다.

일반적으로 모든 세포에서 일정하게 발현되는 glyceroldehyde 3-phosphate dehydrogenase(GAPDH)의 탑식자를 동일한 nitrocellulose membrane에 hybridization하여 유전자 발현량을 측정하여 상대적 발현 정도를 비교하였다.

성 적

MRP의 유전자발현 정도를 L1210와 내성세포들간에 상호비교하기 위하여 RT-PCR을 시행하였 다. RNA를 정제하여 MRP의 각 primer를 이용하여 RT-PCR한 생성물을 1% agarose gel에서 전기영동하여 ethidium bromide로 염색한 결과 L1210, L1210AdR, L1210VcR에서는 399 bps 크기의 중폭된 band를 확인할 수 있었으나 L1210Cis에서는 유의한 band를 판찰할 수 없었다(그림 1).
L1210세포와 내성세포간의 유전자 발현 차이를 명확히 하기 위하여 Northern hybridization을 실시하였다. PCR로 얻은 생성물을 전기영동한 agarose gel로부터 DNA band를 오려낸 후, QIAquick Gel Extraction kit를 사용하여 DNA를 용출하여 MRP 탐식자를 제작에 사용하였다.

Fig. 1. Amplified products of MRP with RT-PCR in 1% agarose gel.

각 세포들로부터 total RNA를 분리한 후 0.8% formaldehyde agarose gel에서 전기영동하였다. MRP 탐식자를 이용하여 Northern hybridization하였으며 ethidium bromide에 염색된 28S ribosomal RNA양과 비교하여 상대적 발현율을 계산하여 그림에 도시하였다. L1210세포에 비하여 L1210AdR은 유전자 발현이 40% 정도 감소하였으며, L1210Cis는 90% 정도의 유전자 발현감소가 관찰되었다(그림 2).

그림 3은 c-myc 유전자의 Northern hybridization 결과이다. L1210와 내성세포들에서 모두 c-myc 유전자가 발현되고 있으며, L1210에 비하여 L1210AdR은 40% 정도의 발현감소가 나타났으나 L1210VcrR과 L1210Cis의 경우는 오히려 약 50% 정도의 발현증가가 관찰되었다.

Fig. 2. Expression of MRP gene in the RNAs extracted from L1210, L1210AdR and L1210Cis with total RNA as standard. And relative gene expression of MRP to total RNA.

Fig. 3. Expression of c-myc gene in the RNAs extracted from L1210, L1210AdR, L1210VcrR and L1210Cis with GAPDH as internal standard. And relative gene expression of c-myc to that of GAPDH.
c-fos 유전자의 경우에도 L1210세포와 내성세포 모두에서 유전자 발현이 관찰되었다. c-myc 유전자와 같이 L1210에 비하여 L1210AdR의 경우에는 c-fos 유전자의 발현 감소가 나타났으며, L1210VcR과 L1210Cis 세포에서는 발현증가가 관찰되었다(그림 4).

Fig. 4. Expression of c-fos gene in the RNAs extracted from L1210, L1210AdR, L1210VcR and L1210Cis with GAPDH as internal standard. And relative gene expression of c-fos to that of GAPDH.

고 찬

본 연구에 이용된 L1210, L1210AdR, L1210VcR 및 L1210Cis 세포들은 내성, 내성체의 내성체에서의 내성생성기전은 L1210AdR과 L1210VcR은 P-단단백질의 과발현에 의한 것으로 mdr1 유전자와 과발현과 160 kD의 세포막 단백질이 새로운 발현됨을 발견하다가(김정희 등, 1991; Kim과 Kim, 1994). 또한 내성의 세포 모두에서 세포내의 glutathione 농도와 glutathione S-transferase의 활성 이 증가되어 있었다(김성용 등, 1993). 본 연구의 결과에서 나타난 MRP 유전자의 발현은 내성성 세포들에서 모두 감소되어 있으므로 L1210AdR와 L1210VcR의 내성생성기전에는 mdr1과 glutathione의 작용이 동시에 관여하거나 MRP는 관여하지 않는 것으로 생각된다. 이러한 사실은 Huang 등(1997)의 사례급성골수성 백혈병 세포주 HL60에서 adriamycin 내성세포(HL60/AR)는 MRP의 발현이 증가되고, vincristine 내성세포(HL60/VCR)는 mdr1의 발현이 증가되어 있다는 보고와는 차이가 있다. 이러한 단단백질들의 주된 기능들 이 약제의 배출에 있으므로 유전자 발현은 다르 나 작용기전은 유사하다고 할 수 있다. 이러한 현상은 L1210와 HL60과 같은 종간의 차이 또는 adriamycin과 vincristine과 같은 약제의 차이에서 비롯된 것으로 생각된다.

L1210Cis는 cisplatin에 대한 내성을 나타내지만 adriamycin이나 vincristine과는 cross-resistance는 갖고 있지 않다. 또 mdr1과 MRP의 유전자의 과
발현이 보이지 않으므로 약제의 배출기전과는 다
론가전, 즉 DNA repair의 증가에 의한 것으로 생
각되지만 아직 정확한 기전은 밝혀져 있지 않다.
그러나 세포내의 glutathione 농도가 증가되어 있
는 것으로 보아 glutathione이 내성과 같은 관계가
있을 것으로 생각된다.

myc은 여러 종류의 종양에서 그 발현이 증가되
어 있으며 c-myc, N-myc, L-myc 등의 계열이 있다.
이들 시료간에도 유사성이 많으며 c-myc이 제일
먼저 발견되었다(Vennstrom 등, 1982; Dalla-
사
람과 생쥐의 c-myc는 3개의 exon으로 되어있고,
c-myc oncoprotein은 62-64 kD의 크기로 가지며
DNA와 결합하려는 성질이 있다. c-myc oncoprotein이
세포내에 많이 발현되는 경우 그 세
포가 S-phase에 진입하여 핵산을 합성하게 합성하
는 양상을 관찰한다는 보고(Vennstrom 등, 1982;
Dalla-Favera 등, 1982)들이 있다. 또 c-myc RNA의
세포내 농도는 분화의 마지막 단계에 있을 때, 정
상세포가 분화과정을 받을 때, 그리고 정상세포가
암세포로 전환될 때 많이 변한다고 한다(Kartner와
Ling V, 1989). 이는 c-myc이 세포의 분화와 성장
에 관여함을 말한다.

C-myc과 같은 세포 암유전자 발현은 유전자
의 변화에 의해, 즉 DNA가 순상되었을 때 또는
외부조절인자가 insertion되어 유전자의 전사나 증
폭을 지극할 때 일어난다. 항암제 등과 같은 대
사 장에 물질에 대하여 내성이 생기게 되면 두 가
지 형태의 chromosome 이상이 발견되는데 double
minute (DM) chromosomes와 homogeneously
staining regions(HSR)이다. L1210에서 유도된
vincristine 내성 L1210VcR 세포(Kim과 Kim,
1994), human colon cancer cell line SNU-C1에서
유도된 vincristine 내성 SNU-C1/VCR 세포(Kim
등, 1990), stomach cancer cell line SNU-1에서 유
도된 adriamycin 내성 SNU-1/ADR세포(Kim정희 등,
1987) 등에서 DM chromosomes을 확인한 보고들
이 이러한 사실을 뒷받침하고 있다. 또한 Alitalo
등(1983)은 DM chromosomes 또는 HSR를 갖고
있는 colon carcinoma로부터 확립된 두 종류의
human neuroendocrine tumor 세포에서 c-myc유전
자의 증폭과 발현이 증가되어 있다고 하였다.

Zhang 등(1994)은 죽의 간 상피조직에서 분리
한 세포에서 TGFβ1에 대한 내성이 증가함에 따라
mdrl 유전자 발현증가와 함께 c-myc과 c-fos의
유전자발현도 증가하며, adriamycin과 melphalan에
대한 내성을 갖는다고 보고하였다. 본 연구의
Northern hybridization 결과에서 c-myc과 c-fos 유
전자의 발현이 L1210에 비하여 L1210AdR에서는
감소하였으나, L1210VcR과 L1210Cis에서는 c-
myc과 c-fos의 유전자가 오히려 발현의 증가를 보
었다. 그러므로 Zhang 등(1994)의 보고에서 c-myc
과 c-fos 유전자 발현 증가는 mdrl의 발현증가,
즉 내성이행에 동반되는 허혈인자 또는 TGFβ1에
의한 발현증가인지에는 명확히 구분되어야 할
것이다.

이상의 결과들과에서 항암제내성이 L1210세포 중
mdrl이 발현되어 있는 L1210AdR과 L1210VcR에
서는 MRP 유전자 발현을 확인할 수 있었으나 L
1210Cis에서는 관찰할 수 없었다. 그러나 L
1210Cis 세포에서는 c-myc과 c-fos의 발현이 현저
히 증가되어 있는 것으로 보아 cisplatin에 대한 내
성기전은 MRP나 mdrl 유전자 발현과는 다른 새로
운 유전자 발현이 내성 형성에 기인하는 것으로
추측되어진다.

요 약

항암제에 대한 내성이 내성성 또는 획득한 내
성 모두가 암의 치료에 장애가 된다. P-망단백질
을 encode하고 있는 mdr1 유전자 발현이 항암제 에 대해 내성을 가지고 있는 암세포에서 많이 관 찰되고 있으며, 최근에는 시험관적으로 항암제에 대한 내성이 유도된 암세포주들에서 mdr1 유전자 가 발현되지 않는 암세포들이 보고되고 있다.

다자연성에 관계하는 또 하나의 유전자인 MRP 발현정도를 L1210세포와 내성인 L1210변이 주들에서 조사하였으며, c-myc과 c-fos 유전자의 발현변화를 관찰하였다.

RT-PCR을 시행하여 L1210, L1210AdR, L1210Vcr에서 MRP 유전자발현을 확인하였으며, Northern hybridization한 결과 L1210세포에 비하여 L1210AdR은 유전자 발현이 40% 정도 감소하였 으며, L1210Cis는 90% 정도의 유전자 발현감소가 관찰되었다.

c-myc과 c-fos유전자의 Northern hybridization한 결과 L1210에 비하여 L1210AdR은 발현감소가 나 타났으나, L1210Vcr과 L1210Cis의 경우는 오히려 발현증가가 관찰되었다.

참고문헌

Abstract

Expression of Multidrug Resistance-associated Protein (MRP), c-myc and c-fos in L1210 Cells

Seong Yong Kim

Department of Biochemistry
College of Medicine, Yeungnam University
Taegu, Korea

The occurrence of multidrug resistance (MDR) is one of the main obstacles in the successful chemotherapeutic treatment of cancer. In this study The gene expressions of multidrug resistance-associated protein (MRP), c-myc and c-fos were investigated in L1210 cells. Adriamycin- or vincristine-resistant L1210 cells, L1210AdR or L1210VcR, respectively, has been identified to overexpression of mdr1 gene.

The expression level of MRP gene in L1210AdR and L1210Cis was more decreased than that in L1210 cells. The c-myc and c-fos genes were expressed both in L1210 and resistant sublines. In L1210AdR, the expressions level of c-myc and c-fos genes were decreased than in L1210. However, in L1210VcR and L1210Cis, c-myc and c-fos gene expression were rather increased than L1210. These results suggested that MRP does not contribute in resistance of drug-resistant L1210 cells and there is no relations between MRP and mdr1 gene expression. The expression of c-myc and c-fos gene may be changed during transformation of L1210 to drug-resistant sublines.

Key Words: Multidrug resistance-associated Protein, c-myc, c-fos