• Title/Summary/Keyword: Multidisciplinary Design Optimization methodology

Search Result 16, Processing Time 0.032 seconds

A Study on the New Method for Structural Analysis and Design by MDO(Multidisciplinary Design Optimization) Methodology : Application to Structural Design of Flap Drive System (MDO기법에 의한 새로운 구조해석 및 설계기법 고찰: 플랩 구동장치의 구조설계에의 적용)

  • 권영주;방혜철
    • Korean Journal of Computational Design and Engineering
    • /
    • v.5 no.2
    • /
    • pp.184-195
    • /
    • 2000
  • MDO (Multidisciplinary Design Optimization) methodology is an emerging new technology to solve a complicate structural analysis and design problem with a large number of design variables and constraints. In this paper MDO methodology is adopted through the use of computer aided systems such as Geometric Solid Modeller, Mesh Generator, CAD system and CAE system. And this paper introduces MDO methodology as a new method for structural analysis and design through the application to the structural design of flap drive system. In a MDO methodology application to the structural design of flap drive system, kinetodynamic analysis is done using a simple aerodynamic analysis model for the air flow over the flap surface instead of difficult aerodynamic analysis. Simultaneously the structural static analysis is done to obtain the optimum structural condition. And the structural buckling analysis for push pull rod is also done to confirm the optimum structural condition (optimum cross section shape of push pull rod).

  • PDF

Decomposition Based Parallel Processing Technique for Efficient Collaborative Optimization (효율적 분산협동설계를 위한 분해 기반 병렬화 기법의 개발)

  • Park, Hyung-Wook;Kim, Sung-Chan;Kim, Min-Soo;Choi, Dong-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.818-823
    • /
    • 2000
  • In practical design studies, most of designers solve multidisciplinary problems with complex design structure. These multidisciplinary problems have hundreds of analysis and thousands of variables. The sequence of process to solve these problems affects the speed of total design cycle. Thus it is very important for designer to reorder original design processes to minimize total cost and time. This is accomplished by decomposing large multidisciplinary problem into several multidisciplinary analysis subsystem (MDASS) and processing it in parallel. This paper proposes new strategy for parallel decomposition of multidisciplinary problem to raise design efficiency by using genetic algorithm and shows the relationship between decomposition and multidisciplinary design optimization (MDO) methodology.

  • PDF

Comparison of MDO Methodologies With Mathematical Examples (수학예제를 이용한 다분야통합최적설계 방법론의 비교)

  • Yi S.I.;Park G.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.822-827
    • /
    • 2005
  • Recently engineering systems problems become quite large and complicated. For those problems, design requirements are fairly complex. It is not easy to design such systems by considering only one discipline. Therefore, we need a design methodology that can consider various disciplines. Multidisciplinary Design Optimization (MDO) is an emerging optimization method to include multiple disciplines. So far, about seven MDO methodologies have been proposed for MDO. They are Multidisciplinary Feasible (MDF), Individual Feasible (IDF), All-at-Once (AAO), Concurrent Subspace Optimization (CSSO), Collaborative Optimization (CO), Bi-Level Integrated System Synthesis (BLISS) and Multidisciplinary Optimization Based on Independent Subspaces (MDOIS). In this research, the performances of the methods are evaluated and compared. Practical engineering problems may not be appropriate for fairness. Therefore, mathematical problems are developed for the comparison. Conditions for fair comparison are defined and the mathematical problems are defined based on the conditions. All the methods are coded and the performances of the methods are compared qualitatively as well as quantitatively.

  • PDF

Parallel Processing Based Decompositon Technique for Efficient Collaborative Optimization (효율적 분산협동최적설계를 위한 병렬처리 기반 분해 기법)

  • Park, Hyeong-Uk;Kim, Seong-Chan;Kim, Min-Su;Choe, Dong-Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.5
    • /
    • pp.883-890
    • /
    • 2001
  • In practical design studies, most of designers solve multidisciplinary problems with large size and complex design system. These multidisciplinary problems have hundreds of analysis and thousands of variables. The sequence of process to solve these problems affects the speed of total design cycle. Thus it is very important for designer to reorder the original design processes to minimize total computational cost. This is accomplished by decomposing large multidisciplinary problem into several multidisciplinary analysis subsystem (MDASS) and processing it in parallel. This paper proposes new strategy for parallel decomposition of multidisciplinary problem to raise design efficiency by using genetic algorithm and shows the relationship between decomposition and multidisciplinary design optimization (MDO) methodology.

Structural Analysis of RIROB(Reactor Inspection Robot) (원자로용 수중탐상기의 구조해석)

  • 최석호;권영주;김재희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.613-616
    • /
    • 1997
  • MDO(Multidisciplinary Design Optimization) methodology is an emerging new technology to solve a complicate structural analysis and design problem with a number of design variables and constraints. In this paper MDO methodology is adopted through the use of computer aided engineering(CAE) system. And this paper treats the structural design problem of RIROB(Reactor Inspection Robot) through the application of MDO methodology. In a MDO methodology application to the structural design of RIBOS, kinetodynamic analysis is done using a simple fluiddynamic analysis model for the warter flow over the sensor support surface instead of difficult fluid dynamic analysis. Simultaneously the structural static analysis is done to obtain the optimum structural condition. The minimum thickness (0.8cm) of the RIROB housing is obtained for the safe design of RIROB. The kinetodynamic analysis of RIROB. The kinetodynamic analysis of RIROB is done using ADAMS and the static structural analysis of RIROB is done using NISA.

  • PDF

Multidisciplinary Multi-Point Design Optimization of Supersonic fighter Wing Using Response Surface Methodology (반응면 기법을 이용한 초음속 전투기 날개의 다학제간 다점 설계)

  • Kim Y. S.;Kim J. M.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.173-176
    • /
    • 2004
  • In this study, the multidisciplinary aerodynamic-structural optimal design is carried out for the supersonic fighter wing. Through the aeroelastic analyses of the various candidate wings, the aerodynamic and structural performances are calculated such as the lift coefficient, the drag coefficient and the deformation of the wing. In general, the supersonic fighter is maneuvered under the various flight conditions and those conditions must be considered all together during the design process. The multi-point design, therefore, is deemed essential. For this purpose, supersonic dash, long cruise range and high angle of attack maneuver are selected as representative design points. Based on the calculated performances of the candidate wings, the response surfaces for the objectives and constraints are generated and the supersonic fighter wing is designed for better aerodynamic performances and less weights than the baseline. At each design point, the single-point design is performed to obtain better performances. Finally, the multi-point design is performed to improve the aerodynamic and structural performances for all design points. The optimization results of the multi-point design are compared with those of the single-point designs and analyzed in detail.

  • PDF

Calculation of the Impact Force Applied on the Tooth of Upper and Lower Jaw-Bones in Masticating for the Design of a Dental Implant System. (MDO기법에 의한 임프란트설계에서 요구되는 저작시 상.하악골치아사이의 충격력 계산)

  • 권영주
    • Korean Journal of Computational Design and Engineering
    • /
    • v.7 no.1
    • /
    • pp.27-33
    • /
    • 2002
  • MDO(Multidisciplinary Design Optimization) methodology is a new technology to solve a complicate design problem with a large number of design variables and constraints. The design of a dental implant system is a typical complicate problem, and so it requires the MDO methodology. Actually, several analyses such as rigid body dynamic analysis and structural stress analysis etc. should be carried out in the MDO methodology application to the design of a dental implant system. In this paper, as a first step of MDO methodology application to the design of a dental implant system, the impact force which is applied on the tooth in masticating is calculated through the rigid body dynamic analysis of upper and lower jaw-bones. This analysis is done using ADAMS. The impact force calculated through the rigid body dynamic analysis can be used for the structural stress analysis of a dental implant system which is needed for the design of a dental implant system. In addition, the rigid body dynamic analysis results also show that the impact time decreases as the impact force increases, the largest impact force occurs on the front tooth, and the impact force is almost normal to the tooth surface with a slight tangential force.

Application of Collaborative Optimization Using Genetic Algorithm and Response Surface Method to an Aircraft Wing Design

  • Jun Sangook;Jeon Yong-Hee;Rho Joohyun;Lee Dong-ho
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.133-146
    • /
    • 2006
  • Collaborative optimization (CO) is a multi-level decomposed methodology for a large-scale multidisciplinary design optimization (MDO). CO is known to have computational and organizational advantages. Its decomposed architecture removes a necessity of direct communication among disciplines, guaranteeing their autonomy. However, CO has several problems at convergence characteristics and computation time. In this study, such features are discussed and some suggestions are made to improve the performance of CO. Only for the system level optimization, genetic algorithm is used and gradient-based method is used for subspace optimizers. Moreover, response surface models are replaced as analyses in subspaces. In this manner, CO is applied to aero-structural design problems of the aircraft wing and its results are compared with the multidisciplinary feasible (MDF) method and the original CO. Through these results, it is verified that the suggested approach improves convergence characteristics and offers a proper solution.

A Study on the Database Design in the MDO Environment (다분야 통합환경에서의 데이터베이스 설계 연구)

  • Hwang, Jin Yong;Jeong, Ju Yeong;Lee, Jae U;Byeon, Yeong Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.5
    • /
    • pp.25-36
    • /
    • 2003
  • Aircraft design pursues integrated design efforts by considering all design elements together. In the integrated design environment, it is crucial for the design data to be consistent, free of errorm, and most recent. Database design process consists of the analysis of the data which shall be stored and managed, the construction of the E-R Diagram, and the mapping of the database table. As a DBMS (DataBase Management System), Oracle 8i is employed to design and construct the database. The database design methodology is devised to apply for the several MDO(Multidisciplinary Design Optimization) techniques like MDF(MultiDisplinary Feasible), IDF(Individual Discipline Feasible), and CO(Collaborative Optimization). The defined process is demonstrated through a couple of design examples, including a simple numerical example and a UCAV(Unmanned Combat Aerial Vehicle) design optimization.

Multi-Objective Optimization of Flexible Wing using Multidisciplinary Design Optimization System of Aero-Non Linear Structure Interaction based on Support Vector Regression (Support Vector Regression 기반 공력-비선형 구조해석 연계시스템을 이용한 유연날개 다목적 최적화)

  • Choi, Won;Park, Chan-Woo;Jung, Sung-Ki;Park, Hyun-Bum
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.7
    • /
    • pp.601-608
    • /
    • 2015
  • The static aeroelastic analysis and optimization of flexible wings are conducted for steady state conditions while both aerodynamic and structural parameters can be used as optimization variables. The system of multidisciplinary design optimization as a robust methodology to couple commercial codes for a static aeroelastic optimization purpose to yield a convenient adaptation to engineering applications is developed. Aspect ratio, taper ratio, sweepback angle are chosen as optimization variables and the skin thickness of the wing. The real-coded adaptive range multi-objective genetic algorithm code, which represents the global multi-objective optimization algorithm, was used to control the optimization process. The support vector regression(SVR) is applied for optimization, in order to reduce the time of computation. For this multi-objective design optimization problem, numerical results show that several useful Pareto optimal designs exist for the flexible wing.