• Title/Summary/Keyword: Multidimensional Simulation

Search Result 60, Processing Time 0.024 seconds

A Comprehensive Groundwater Modeling using Multicomponent Multiphase Theory: 1. Development of a Multidimensional Finite Element Model (다중 다상이론을 이용한 통합적 지하수 모델링: 1. 다차원 유한요소 모형의 개발)

  • Joon Hyun Kim
    • Journal of Korea Soil Environment Society
    • /
    • v.1 no.1
    • /
    • pp.89-102
    • /
    • 1996
  • An integrated model is presented to describe underground flow and mass transport, using a multicomponent multiphase approach. The comprehensive governing equation is derived considering mass and force balances of chemical species over four phases(water, oil, air, and soil) in a schematic elementary volume. Compact and systemati notations of relevant variables and equations are introduced to facilitate the inclusion of complex migration and transformation processes, and variable spatial dimensions. The resulting nonlinear system is solved by a multidimensional finite element code. The developed code with dynamic array allocation, is sufficiently flexible to work across a wide spectrum of computers, including an IBM ES 9000/900 vector facility, SP2 cluster machine, Unix workstations and PCs, for one-, two and three-dimensional problems. To reduce the computation time and storage requirements, the system equations are decoupled and solved using a banded global matrix solver, with the vector and parallel processing on the IBM 9000. To avoide the numerical oscillations of the nonlinear problems in the case of convective dominant transport, the techniques of upstream weighting, mass lumping, and elementary-wise parameter evaluation are applied. The instability and convergence criteria of the nonlinear problems are studied for the one-dimensional analogue of FEM and FDM. Modeling capacity is presented in the simulation of three dimensional composite multiphase TCE migration. Comprehesive simulation feature of the code is presented in a companion paper of this issue for the specific groundwater or flow and contamination problems.

  • PDF

A Study on the Radiation Heat Transfer Characteristics of Liquid Droplet Radiator (액적방열기의 복사열전달 특성에 관한 연구)

  • 김금무;김용모;김경근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.1
    • /
    • pp.32-40
    • /
    • 1994
  • The radiative heat transfer analysis in particle layer has an inherent difficulty in treating the governing integro-differential equations, which are derived from the remote effects. Most of the existing analyses are limited to the one dimensional system, taking into account only absorption or isotropic scatting of solid particles. Fortunately, a new Monte Carlo Simulation method is recently developed to analyse multidimensional radiative heat transfer in particles with anisotropically scatting. By this method, the present study analyses the radiative heat transfer in dispersed particles through the numerous droplets in the liquid droplet radiator to develop a technique of liquid droplet radiator. Consequently, knows that the radiative heat flux in particle layer is influenced by exitinction coefficient, optical thickness and surface area of particles in the system.

  • PDF

Modelling of multidimensional effects in thermal-hydraulic system codes under asymmetric flow conditions - Simulation of ROCOM tests 1.1 and 2.1 with ATHLET 3D-Module

  • Pescador, E. Diaz;Schafer, F.;Kliem, S.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3182-3195
    • /
    • 2021
  • The implementation and validation of multi-dimensional (multi-D) features in thermal-hydraulic system codes aims to extend the application of these codes towards multi-scale simulations. The main goal is the simulation of large-scale three-dimensional effects inside large volumes such as piping or vessel. This novel approach becomes especially relevant during the simulation of accidents with strongly asymmetric flow conditions entailing density gradients. Under such conditions, coolant mixing is a key phenomenon on the eventual variation of the coolant temperature and/or boron concentration at the core inlet and on the extent of a local re-criticality based on the reactivity feedback effects. This approach presents several advantages compared to CFD calculations, mainly concerning the model size and computational efforts. However, the range of applicability and accuracy of the newly implemented physical models at this point is still limited and needs to be further extended. This paper aims at contributing to the validation of the multi-D features of the system code ATHLET based on the simulation of the Tests 1.1 and 2.1, conducted at the test facility ROCOM. Overall, the multi-D features of ATHLET predict reasonably well the evolution from both experiments, despite an observed overprediction of coolant mixing at the vessel during both experiments.

Numerical Simulation of Water Table Drawdown due to Groundwater Pumping in a Contaminated Aquifer System at a Shooting Test Site, Pocheon, Korea

  • Kihm, Jung-Hwi;Hwang, Gisub
    • Economic and Environmental Geology
    • /
    • v.54 no.2
    • /
    • pp.247-257
    • /
    • 2021
  • The study area has been contaminated with explosive materials and heavy metals for several decades. For the design of the pump and treat remediation method, groundwater flow before and during groundwater pumping in a contaminated aquifer system was simulated, calibrated, and predicted using a generalized multidimensional hydrological numerical model. A three-dimensional geologic formation model representing the geology, hydrogeology, and topography of the aquifer system was established. A steady-state numerical simulation with model calibration was performed to obtain initial steady-state spatial distributions of groundwater flow and groundwater table in the aquifer system before groundwater pumping, and its results were illustrated and analyzed. A series of transient-state numerical simulations were then performed during groundwater pumping with the four different pumping rates at a potential location of the pumping well. Its results are illustrated and analyzed to provide primary reference data for the pump and treat remediation method. The results of both steady-state and transient-state numerical simulations show that the spatial distribution and properties of the geologic media and the topography have significant effects on the groundwater flow and thus depression zone.

Multi-Dimensional Effects on a tow Strain Rate Flame Extinction Under Microgravity Environment (미소 중력장에 있는 저신장율 화염소화에 미치는 다차원 효과)

  • Oh Chang Bo;Kim Jeong Soo;Hamins Anthony;Park Jeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.9 s.240
    • /
    • pp.988-996
    • /
    • 2005
  • Flame structure and extinction mechanism of counterflow methane/air non-premixed flame diluted with nitrogen are studied by NASA 2.2 s drop tower experiments and two-dimensional numerical simulations with finite rate chemistry and transport properties. Extinction mechanism at low strain rate is examined through the comparison among results of microgravity experiment, 1D and 2D simulations with a finite burner diameter. A two-dimensional simulation in counterflow flame especially with a finite burner diameter is shown to be very important in explaining the importance of multidimensional effects and lateral heat loss in flame extinction, effects that cannot be understood using a one-dimensional flamelet model. Extinction mechanism at low strain rate is quite different from that at high strain rate. Low strain rate flame is extinguished initially at the outer flame edge, the flame shrinks inward, and finally is extinguished at the center. It is clarified from the overall fractional contribution by each term in energy equation to heat release rate that the contribution of radiation fraction with 1D and 2D simulations does not change so much and the overall fractional contribution is decisively attributed to radial conduction ('lateral heat loss'). The experiments by Maruta et at. can be only completely understood if multi-dimensional heat loss effects are considered. It is, as a result, verified that the turning point, which is caused only by pure radiation heat loss, has to be shifted towards much lower global strain rate in microgravity flame.

Node Distribution-Based Localization for Large-scale Wireless Sensor Networks (대규모 무선 센서 네트워크에서 노드 분포를 고려한 분산 위치 인식 기법 및 구현)

  • Han, Sang-Jin;Lee, Sung-Jin;Lee, Sang-Hoon;Park, Jong-Jun;Park, Sang-Joon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.9B
    • /
    • pp.832-844
    • /
    • 2008
  • Distributed localization algorithms are necessary for large-scale wireless sensor network applications. In this paper, we introduce an efficient node distribution based localization algorithm that emphasizes simple refinement and low system load for low-cost and low-rate wireless sensors. Each node adaptively chooses neighbor nodes for sensors, update its position estimate by minimizing a local cost function and then passes this update to the neighbor nodes. The update process considers a distribution of nodes for large-scale networks which have same density in a unit area for optimizing the system performance. Neighbor nodes are selected within a range which provides the smallest received signal strength error based on the real experiments. MATLAB simulation showed that the proposed algorithm is more accurate than trilateration and les complex than multidimensional scaling. The implementation on MicaZ using TinyOS-2.x confirmed the practicality of the proposed algorithm.

Multidimensional Ring-Delta Network: A High-Performance Fault-Tolerant Switching Networks (다차원 링-델타 망: 고성능 고장감내 스위칭 망)

  • Park, Jae-Hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.1B
    • /
    • pp.1-7
    • /
    • 2010
  • In this paper, a high-performance fault-tolerant switching network using a deflection self-routing was proposed. From an abstract algebraic analysis of the topological properties of the Delta network, which is a baseline switching network, we derive the Multidimensional Ring-Delta network: a multipath switching network using a deflection self-routing algorithm. All of the links including already existing links of the Delta network are used to provide the alternate paths detouring faulty/congested links. We ran a simulation analysis under the traffic loads having the non-uniform address distributions that are usual in Internet. The throughput of $1024\;{\times}\;1024$ switching network proposed is better than that of the 2D ring-Banyan network by 13.3 %, when the input traffic load is 1.0 and the hot ratio is 0.9. The reliability of $64\;{\times}\;64$ switching network proposed is better than that of the 2D ring-Banyan network by 46.6%.

Optimum Subband Quantization Filter Design for Image Compression (영상압축을 위한 최적의 서브밴드 양자화 필터 설계)

  • Park, Kyu-Sik;Park, Jae-Hyun
    • The KIPS Transactions:PartB
    • /
    • v.12B no.4 s.100
    • /
    • pp.379-386
    • /
    • 2005
  • This paper provides a rigorous theory for analysis of quantization effects and optimum filter bank design in quantized multidimensional subband filter banks. Even though subband filter design has been a hot topic for last decades, a few results have been reported on the subband filter with a quantizer. Each pdf-optimized quantizer is modeled by a nonlinear gain-plus-additive uncorrelated noise and embedded into the subband structure. Using polyphase decomposition of the analysis/synthesis filter banks, we derive the exact expression for the output mean square quantization error. Based on the minimization of the output mean square error, the technique for optimal filter design methodology is developed. Numerical design examples for optimum nonseparable paraunitary and biorthogonal filter banks are presented with a quincunx subsampling lattice. Through the simulation, $10\~20\;\%$ decreases in MSE have been observed compared with subband filter with no quantizers especially for low bit rate cases.

A Study on the Rainfall Generation (In Two-dimensional Random Storm Fields) (강우의 모의발생에 관한 연구 (2차원 무작위 호우장에서))

  • Lee, Jea Hyoung;Soun, Jung Ho;Hwang, Man Ha
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.1
    • /
    • pp.109-116
    • /
    • 1991
  • In recent years, hydrologists have been interested in the radial spectrum and its estimation in two dimensional storm field to construct simulation model of the rainfall. This paper deals with the problem of transformation from the spectrum or isotropic covariance function to two dimensional random field. The extended turning band method for the generation of random field is applied to the problem using the line generation method of one dimensional stochastic process by G.Matheron. Examples of this generation is chosen in the random components of the multidimensional rainfall model suggested by Bras and are given with a comparison between theoretical and sample statistics. In this numerical experiments it is observed that first and second order statistics can be conserved. Also the example of moving storm simulation through Bras model is presented with the appropriate parameters and sample size.

  • PDF

Modelling and Simulating the Spatio-Temporal Correlations of Clustered Wind Power Using Copula

  • Zhang, Ning;Kang, Chongqing;Xu, Qianyao;Jiang, Changming;Chen, Zhixu;Liu, Jun
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1615-1625
    • /
    • 2013
  • Modelling and simulating the wind power intermittent behaviour are the basis of the planning and scheduling studies concerning wind power integration. The wind power outputs are evidently correlated in space and time and bring challenges in characterizing their behaviour. This paper provides a methodology to model and simulate the clustered wind power considering its spatio-temporal correlations using the theory of copula. The sampling approach captures the complex spatio-temporal connections among the wind farms by employing a conditional density function calculated using multidimensional copula function. The empirical study of real wind power measurement shows how the wind power outputs are correlated and how these correlations affect the overall uncertainty of clustered wind power output. The case study validates the simulation technique by comparing the simulated results with the real measurements.