• Title/Summary/Keyword: Multidimensional Data Model

Search Result 172, Processing Time 0.025 seconds

Multidimensional Optimization Model of Music Recommender Systems (음악추천시스템의 다차원 최적화 모형)

  • Park, Kyong-Su;Moon, Nam-Me
    • The KIPS Transactions:PartB
    • /
    • v.19B no.3
    • /
    • pp.155-164
    • /
    • 2012
  • This study aims to identify the multidimensional variables and sub-variables and study their relative weight in music recommender systems when maximizing the rating function R. To undertake the task, a optimization formula and variables for a research model were derived from the review of prior works on recommender systems, which were then used to establish the research model for an empirical test. With the research model and the actual log data of real customers obtained from an on line music provider in Korea, multiple regression analysis was conducted to induce the optimal correlation of variables in the multidimensional model. The results showed that the correlation value against the rating function R for Items was highest, followed by Social Relations, Users and Contexts. Among sub-variables, popular music from Social Relations, genre, latest music and favourite artist from Items were high in the correlation with the rating function R. Meantime, the derived multidimensional recommender systems revealed that in a comparative analysis, it outperformed two dimensions(Users, Items) and three dimensions(Users, Items and Contexts, or Users, items and Social Relations) based recommender systems in terms of adjusted $R^2$ and the correlation of all variables against the values of the rating function R.

A Study on an Automatic Classification Model for Facet-Based Multidimensional Analysis of Civil Complaints (패싯 기반 민원 다차원 분석을 위한 자동 분류 모델)

  • Na Rang Kim
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.29 no.1
    • /
    • pp.135-144
    • /
    • 2024
  • In this study, we propose an automatic classification model for quantitative multidimensional analysis based on facet theory to understand public opinions and demands on major issues through big data analysis. Civil complaints, as a form of public feedback, are generated by various individuals on multiple topics repeatedly and continuously in real-time, which can be challenging for officials to read and analyze efficiently. Specifically, our research introduces a new classification framework that utilizes facet theory and political analysis models to analyze the characteristics of citizen complaints and apply them to the policy-making process. Furthermore, to reduce administrative tasks related to complaint analysis and processing and to facilitate citizen policy participation, we employ deep learning to automatically extract and classify attributes based on the facet analysis framework. The results of this study are expected to provide important insights into understanding and analyzing the characteristics of big data related to citizen complaints, which can pave the way for future research in various fields beyond the public sector, such as education, industry, and healthcare, for quantifying unstructured data and utilizing multidimensional analysis. In practical terms, improving the processing system for large-scale electronic complaints and automation through deep learning can enhance the efficiency and responsiveness of complaint handling, and this approach can also be applied to text data processing in other fields.

Wear Debris Analysis using the Color Pattern Recognition (칼라 패턴인식을 이용한 마모입자 분석)

  • ;A.Y.Grigoriev
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.06a
    • /
    • pp.54-61
    • /
    • 2000
  • A method and results of classification of 4 types metallic wear debris were presented by using their color features. The color image of wear debris was used (or the initial data, and the color properties of the debris were specified by HSI color model. Particle was characterized by a set of statistical features derived from the distribution of HSI color model components. The initial feature set was optimized by a principal component analysis, and multidimensional scaling procedure was used for the definition of classification plane. It was found that five features, which include mean values of H and S, median S, skewness of distribution of S and I, allow to distinguish copper based alloys, red and dark iron oxides and steel particles. In this work, a method of probabilistic decision-making of class label assignment was proposed, which was based on the analysis of debris-coordinates distribution in the classification plane. The obtained results demonstrated a good availability for the automated wear particle analysis.

  • PDF

A Numerical Study on Heat Transfer Characteristics in a Spray Column Direct Contact Heat Exchanger

  • Kim, Chong-Bo;Kang, Yong-Heack;Kim, Nam-Jin;Hur, Byung-Ki
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.344-353
    • /
    • 2002
  • A reliable computational heat transfer model has been investigated to define the heat transfer characteristics of a spray column direct contact heat exchanger, which is often utilized in the process involving counterflows for heat and mass transfer operations. Most of the previous studies investigated are one-dimensional unsteady solutions based on rather fragmentary experimental data. Development of a multidimensional numerical model and a computational algorithm are essential to analyze the inherent multidimensional characteristics of a direct contact heat exchanger. The present study has been carried out numerically and establishes a solid simulation algorithm for the operation of a direct contact heat exchanger. Operational and system parameters such as the speed and direction of working fluid droplets at the injection point, and the effects of aspect ratio and void fraction of continuous fluid are examined thoroughly as well to assess their influence on the performance of a spray column.

Wear Debris Analysis using the Color Pattern Recognition

  • Chang, Rae-Hyuk;Grigoriev, A.Y.;Yoon, Eui-Sung;Kong, Hosung;Kang, Ki-Hong
    • KSTLE International Journal
    • /
    • v.1 no.1
    • /
    • pp.34-42
    • /
    • 2000
  • A method and results of classification of four different metallic wear debris were presented by using their color features. The color image of wear debris was used far the initial data, and the color properties of the debris were specified by HSI color model. Particles were characterized by a set of statistical features derived from the distribution of HSI color model components. The initial feature set was optimized by a principal component analysis, and multidimensional scaling procedure was used fer the definition of a classification plane. It was found that five features, which include mean values of H and S, median S, skewness of distribution of S and I, allow to distinguish copper based alloys, red and dark iron oxides and steel particles. In this work, a method of probabilistic decision-making of class label assignment was proposed, which was based on the analysis of debris-coordinates distribution in the classification plane. The obtained results demonstrated a good availability for the automated wear particle analysis.

  • PDF

Multidimensional Scaling of User Preferences for the Transportation Modes in Seoul. (다차원척도법에 의한 서울주민의 교통수단선호 분석)

  • 허우선
    • Journal of Korean Society of Transportation
    • /
    • v.4 no.1
    • /
    • pp.12-27
    • /
    • 1986
  • This study examined user preferences toward transportation modes in Seoul. Two multidimensional scaling models, the ideal point and vector models, were applied to data on mode preferences of 114 adults in the metropolitan area. While both models produced fairly similar results, the vector model performed slightly better than the other in terms of interpretability of the results. The transport attributes elicited are comfort, flexibility, travel cost, travel time, privacy, and safety; among which comfort is salient most. The comfort variable is a multi-faceted attribute in nature. The variations of attribute preferences are most significant between the gender groups as well as worker/nonworker groups. In particular, male workers, female workers and female nonworkers form three distinctive market segments. An unidimensional scaling of the preference data reveals that subway, auto-driver, and subscription bus modes are preferred most, whereas motorcycle and bicycle least. The other modes of express bus, taxt, auto-passenger, bus and walk rank intermediately. An examination of how preference orders vary among modal groups hints that users align their stated attitudes to their choice in order to reduce cognitive dissonance.

  • PDF

A study on the efficiency of multidimensional scalin using bootstrap method (붓스트랩을 이용한 다차원척도법의 효율성 연구)

  • Kim, Woo-Jong;Kang, Kee-Hoon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.2
    • /
    • pp.301-309
    • /
    • 2009
  • Multidimensional scaling(MDS) is a statistical multivariate analysis technique that is often used in information visualization for exploring similarities or dissimilarities in data. In order to analyse and visualize data, MDS measures the dissimilarities between objects and uses them or their mean if they are repeatedly measured. When there exist outliers or when the variation of data is too large, we can hardly get reliable results on the research using MDS. In this paper, we consider the MDS based on bootstrap method when the variation of data is large. Standardized residual sum of squares is considered as measuring goodness-of-fit of the model. A real data analysis is include to examine our approach.

  • PDF

A Copula method for modeling the intensity characteristic of geotechnical strata of roof based on small sample test data

  • Jiazeng Cao;Tao Wang;Mao Sheng;Yingying Huang;Guoqing Zhou
    • Geomechanics and Engineering
    • /
    • v.36 no.6
    • /
    • pp.601-618
    • /
    • 2024
  • The joint probability distribution of uncertain geomechanical parameters of geotechnical strata is a crucial aspect in constructing the reliability functional function for roof structures. However, due to the limited number of on-site exploration and test data samples, it is challenging to conduct a scientifically reliable analysis of roof geotechnical strata. This study proposes a Copula method based on small sample exploration and test data to construct the intensity characteristics of roof geotechnical strata. Firstly, the theory of multidimensional copula is systematically introduced, especially the construction of four-dimensional Gaussian copula. Secondly, data from measurements of 176 groups of geomechanical parameters of roof geotechnical strata in 31 coal mines in China are collected. The goodness of fit and simulation error of the four-dimensional Gaussian Copula constructed using the Pearson method, Kendall method, and Spearman methods are analyzed. Finally, the fitting effects of positive and negative correlation coefficients under different copula functions are discussed respectively. The results demonstrate that the established multidimensional Gaussian Copula joint distribution model can scientifically represent the uncertainty of geomechanical parameters in roof geotechnical strata. It provides an important theoretical basis for the study of reliability functional functions for roof structures. Different construction methods for multidimensional Gaussian Copula yield varying simulation effects. The Kendall method exhibits the best fit in constructing correlations of geotechnical parameters. For the bivariate Copula fitting ability of uncertain parameters in roof geotechnical strata, when the correlation is strong, Gaussian Copula demonstrates the best fit, and other Copula functions also show remarkable fitting ability in the region of fixed correlation parameters. The research results can offer valuable reference for the stability analysis of roof geotechnical engineering.

Multidimensional Dynamic Water Quality Modeling of Organic Matter and Trophic State in the Han River System (한강수계에서의 다차원 시변화 유기물 및 영양상태 모델 연구)

  • Kim, Eun-Jung;Park, Seok-Soon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.3
    • /
    • pp.151-164
    • /
    • 2013
  • Multidimensional dynamic water quality model of organic matter and trophic state was applied to the Han River system. The model was calibrated using field measurement data obtained during the year of 2007. The model results showed reasonable performance in predicting temporal variations of TN, TP, Chl-a and BOD concentrations. The applied integrated modeling system can be effectively used to simulate water quality as well as hydrodynamic and water temperature for river-lake continuous system in the Han River. Utilizing the calibrated model, we analyzed the spatial and temporal distributions of TN, TP, Chl-a and BOD concentrations in the Han River system. The temporal variations of water quality at each river reach and lake were effectively simulated with the developed model and spatial distribution of water qualities in the Han River system could be compared. The multidimensional dynamic modeling system can simulate the water qualities of entire waterbody where Lake Paldang and the incoming flows are included using single modeling system. So it can be effectively used for integrated water quality management of the Han River system.

Visualizing SVM Classification in Reduced Dimensions

  • Huh, Myung-Hoe;Park, Hee-Man
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.5
    • /
    • pp.881-889
    • /
    • 2009
  • Support vector machines(SVMs) are known as flexible and efficient classifier of multivariate observations, producing a hyperplane or hyperdimensional curved surface in multidimensional feature space that best separates training samples by known groups. As various methodological extensions are made for SVM classifiers in recent years, it becomes more difficult to understand the constructed model intuitively. The aim of this paper is to visualize various SVM classifications tuned by several parameters in reduced dimensions, so that data analysts secure the tangible image of the products that the machine made.