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Visualizing SVM Classification in Reduced Dimensions
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Abstract
Support vector machines(SVMs) are known as flexible and efficient classifier of multivariate observations,
producing a hyperplane or hyperdimensional curved surface in multidimensional feature space that best separates
training samples by known groups. As various methodological extensions are made for SVM classifiers in recent
years, it becomes more difficult to understand the constructed model intuitively. The aim of this paper is to
visualize various SVM classifications tuned by several parameters in reduced dimensions, so that data analysts
secure the tangible image of the products that the machine made.
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1. Background and Aim

Suppose that we have n observations (xy, 1), .. ., (x,, y,) each of which belongs to one of two classes,
Class 1 or Class 0, where x;’s are p x 1 vectors of feature variables on the continuous scale and
yi’s are either 1 (for Class 1) or —1 (for Class 0) according to the associated group. Support vector
machines(SVMs) are known as very flexible and efficient classifier of multivariate observations into
membership groups (Vapnik, 1999; Hastie et al., 2001). SVM classifiers are constructed by finding a
hyperplane in the given feature space or in the transformed feature space that separates two groups of
observations by the maximal margin.

We start with the linear SVM classifier, which predicts unclassified unit x to Class 1 if f;(x) > 0,
or Class 0 otherwise, where

fu(x) =w'x + b, 1.1

xis a p x 1 feature vector, w is a p X 1 vector of coefficients and b is a constant. In the linear SVM
classifier, w and b are found by solving

Il <
min T+ C > &, subjectto ywWx,+b)>21-&,i=1,...,n, (1.2)
" =1

where ¢ 2 0,6, 2 0,...,&, > 0 are slacks and C is a parameter that affects the cost due to positive
slacks. Using Lagrange multipliers 4; > 0,...,4, > 0 attached to » constraints in (1.2), w can be

expressed as
n
w = Z /li Vi Xi.
i=1

Hence the classification (1.1) is determined by a subset of observations (x;,y;) with 4; > 0, called by
“support vectors”.
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The linear SVM has been extended to a more flexible nonlinear machine that predicts unclassified
unit x to y = 1if fy(x) > 0, or —1 otherwise, where

fw(x) = w'd(x) + b, (1.3)
where ®(x) is a transform of x. Also in the nonlinear SVM classifier, w and b are found by solving

G _ , ,
min —— + CZ &, subjectto y,(W®(x)+b)21-&,i=1,...,n.
wib 2 i=1

Then, by the “kernel trick”, the classification function (1.3) is simplified to
n
@ =) Ay K(xi, ) +b, (1.4)
i=1

where typical kernel functions K(x, x’) are
Linear: K(x,x') = x'x’,
The d" degree polynomial: K(x,x’) = (x'x’ + 1),
Gaussian radial basis function(RBF): K(x, x’) = exp(—y || x — ¥/ 1P, v >0,
Sigmoid: K(x, x") = tanh(y x'x’ +¢), vy >0, c < 0.

Several researchers proposed visualization methods of SVM or nonlinear classifications. For in-
stance, Wickham et al. (2006) produced R package explore linked to GGobi to visualize separating
manifolds dynamically on the two-dimensional subspace. Also, Huh and Lee (2008) and Huh (2009)
proposed the so-called conditional predictive graphs which contain a number of traces of the classi-
fication function for one explanatory variable varying on the prediction interval with the other p — 1
variables fixed at observed values.

The aim of this paper is to visualize various SVM classifications tuned by several parameters in
reduced dimensions, so that data analysts secure the tangible image of the products that the machine
made without much effort of their side. However, this study does not intend to cover optimal choice of
the tuning parameters in SVM, so that the parameters adopted in numerical examples of this paper are
chosen arbitrarily. Nevertheless, visual displays may be useful in judging whether the specific SVM
classification is over- or under-fitted.

In Section 2, we visualize linear SVM classifications (1.1) constructed from Monte-Carlo and real
datasets in 2D subspace. In Section 3, we visualize nonlinear classifications (1.4) constructed from
Monte-Carlo and real datasets in reduced dimensions. In Section 4, we generalize our methods to the
case of three or more classes.

2. Visualizing Linear SVM Classifications
In linear SVM classifications, the classification boundary is specified as
fi(x)=0 or wx+b=0,

which is perpendicular to px1 unit vector w/||w || (= v!!!) in p-dimensional feature space. Hence, to vi-
sualize predicted class labels effectively at n observed units, we propose to plot dots at vV x;, ... vy,
in different colors depending on the predicted class (“blue” for Class 1 and “red” for Class 0).
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Since two-dimensional graph can be drawn without much additional effort, we add the second
axis, which is orthogonal to the first axis determined by w or V1. Therefore we proceed as follows.

First, project px 1 vectors xi, . . ., x, on the directional vector vI! (= w/|| w||) and compute residual
vectors x[lu, e, xﬁ,”. That is,
xl[.l] =x vy =1, n
Here we assume that the rows of X’ = (xy,...,x,) are standardized to have mean 0 and standard

deviation 1.

Second, compute the principal component direction vector v[?! that carries maximally dispersed
projections of xE”, ..., 2. That is, v is the eigenvector corresponding to the largest eigenvalue of
XXM, where XU = (1, ..., xI1).

Third, n observations are dotted at
zt[l] = vy, z?] =y (G=1,...,n),

on the first and second axis, respectively, in different colors depending on their membership class
(“blue” for Class 1 or “red” for Class 0). Accordingly, on the first and second axis, the feature
variables are plotted with arrow heads at p components of

[ _ 2 _

y y

On the 2D projection plane, we may superimpose probability contours as follows. For i’ = (uy, uy)
of the 2D projection plane, define the inverse projection by x = u;v!*! + u;v[?! and attach to x the
probability p.(1) being classified to Class 1. Then, we superimpose the probability contours to the 2D
display of SVM classification.

For the propensity probability, we simply adopted the 1ibsvm (Chang and Lin, 2001)’s probabi-
lity, which is known as the implementation of Platt (2000) and Wu et al. (2004). Recently, Wang et
al. (2008) improved the method for computing propensity probability following SVM classification.

Ezxample 1. (Monte-Carlo Simulated Dataset) This simulation study for two class problem, that
will be continued in section 3 and modified in Section 4, is intended to show the effectiveness of the
reduced dimensional display of SVM classification.

Four hundred (X;, X;) observations are generated uniformly on the inside of 2D-sphere with radius
2, and the third variable X3 is independently generated from Uniform (-2, 2):

B+xd<4, -2<m;3<2
Class labels 1 or O are assigned to (x1, x;, x3)’s by the following rule.

If (x; — 1)* + x2 < 1, itis assigned to Class 1.
Elsewhere, it is assigned to Class 0.

Figure 1 visualizes the linear SVM classification (C = 1) constructed from the simulated dataset. The
observation plot(left) with the classification boundary reveals the poor performance of the linear clas-
sification, while the variable plot(right) shows that X; is more important than X, or X; in determining
the classification. We will present a better classification in the next section.
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Figure 1: Visualization of the linear SVM classification for the Monte-Carlo dataset. The dotted line is the
classification boundary.
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Figure 2: Visualizing the linear SVM classification for the two-class Iris data (Versicolor vs. Virginica). The
solid line is the classification boundary. Dotted lines denote probability contours at the 0.9 level.

Example 2. Iris data (Versicolor vs. Virginica) Fisher’s iris data consists of 150 observations in
three known species (setosa, versicolor, virginica). Four measurements (sepal length, sepal width,
petal length, petal width) are recorded for each observation. Here we consider the classification
between two species, versicolor versus virginica.

Figure 2 shows the observation plot(left) and the variable plot(right) of the linear SVM classifi-
cation (C = 1) with the classification boundary and two probability contours at the 0.9 level being
classified to the dominant class. We find several observations near the boundary, so that there can hap-
pen misclassfications in the future. Variable plot shows that the first dimension is determined more or
less by two petal variables and that second dimension is by two sepal variables.
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3. Visualizing Nonlinear SVM Classifications

In nonlinear SVM classifications, the classification function is given in (1.4) as

fv) = Y Ay K(xi 3) +b.
i=1
Hence the gradient of fi(x) can be written as
n
Vv = D iy VK, 0.
i=1
For the Gaussian RBF K(x, x') = exp(—y || x — ¥’ |1°),

Vi) =2y D" diyi exp(=yllxi - ¥ IF) (xi - 2).
i=1

Since constructed SVM classification depends only on L(< n) support vectors
Xs = {xspxsp v ,xSL} H

we restrict our attention to the gradient vectors at X,: For Gaussian RBF,

Viv(x,) = -2y Z Aiyi exp(—=yllxi = %, IP) (i - x,), I=1,...,L.
i=1

We propose the 2D display for nonlinear SVM classifications as follows.
First, obtain p x L matrix G’ consisting of gradient vectors as columns:

G' = (Viy(xs)s .., Vin(xs,))-

Here we assume that the rows of X’ = (xi,...,x,) are standardized to have mean O and standard
deviation 1.

Second, compute principal component direction vectors vI!! and v that carries maximally dis-
persed projections of V fy(x,,), ...,V fy(x;,). That is, v!! and v1?! are the eigenvectors corresponding
to the largest and second largest eigenvalues of G'G. Thus ||V |j = 1, |[v?1]] = 1, 112 = .

Third, n observations are dotted at

Zlm =y, zl[z] =vlx (i=1,...,n)

on the first and the second axis, respectively, colored differently depending on their membership class
(“red” for Class 0 or “blue” for Class 1). Accordingly, on the first and second axis, the feature variables
are plotted with arrow heads at p components of

0l = @ _ 2

Yy y
Fourth, we may superimpose probability contours as in the case of linear SVM classifications.

Ezample 3. Continuation of Example 1 Figure 3 visualizes the Gaussian RBF SVM classifica-
tion (C = 1, ¥ = 0.33) constructed for the simulated dataset of Example 1. The variable plot(right)
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Figure 3: Visualization of RBF SVM classification for the Monte-Carlo dataset. The central solid curve is the
classification boundary. Dotted curves denote probability contours at the 0.9 level.
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Figure 4: Gaussian RBF SVM classification for the two-class Iris data (Versicolor vs. Virginica). The central

solid curve is the classification boundary. Dotted curves denote probability contours at the 0.9 level.

shows correctly that two variables, X; and X,, are crucial and the third variable X3 is irrelevant in
determining the classification. Moreover, unlike the linear case, the observation plot(left) with classi-
fication boundary reveals the excellent performance of the nonlinear classification.

Ezxample 4. Continuation of Example 2 Figure 4 shows the observation plot(left) and the vari-
able plot(right) of the Gaussian RBF SVM classification (C = 1, y = 0.25) with classification bound-
ary and two probability contours of the 0.9 level being classified to the dominant class. The first
axis of nonlinear SVM classification is more or less similar to that of the linear SVM classication,
visualized in Figure 2, while the second axes of linear and nonlinear SVM classifications are quite
different.
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4. m-class Problem

wise classifications: Inside the m-class SVM classification, there exist ,C, classification functions
of the form f¥%1%21(x), which is expressed with Ly, 1,)(< n) support vectors, that distinguishes Class
k; against Class k,. Thus we need to gather the gradient vectors into the matrix Gy, x, of f¥1*1(x) for
1 < k) < ky < m at the support vectors for respective classification, where

For classification problem for more than m > 2 classes, SVM classification consists of all pair-

G;C] ,kZ = (Vf[kl’kZ] (xsl) e Vf[kl,kZ] ('xSL[k],kz] ))

and join all G, ’s side by side:

i1 1 t t
Gy =(Glre Gl Gl ) @4.1)
Then, compute principal component direction vectors vl and v that carry maximally dispersed
projections of all column vectors of G*. That is, vI! and vI?! are the eigenvectors corresponding to the
largest and second largest eigenvalues of G'G. Thus ||[vI1 || = 1, |vi@ || = 1, vIU2 = 0,
Hence, n observations are dotted at

zlm =y, 21[2] =V (G=1,...,n)

on the first and second axis, respectively, colored differently depending on their membership class
(“blue” for Class 1, “green” for Class 2,.. ., “red” for Class m). Accordingly, on the first and second
axis, the feature variables are plotted with arrow heads at p components of

[ _ @ _ e

y y

‘We may superimpose probability contours as for the case of two-class SVM classifications.

Ezample 5. Monte-Carlo Simulated Dataset The dataset is the same as that in Example 1 except
class labels assigned to the units and the number of classes. Class labels 1, 2 or 3 are determined by
the following rule.

If (x; — 1)* + x2 < 1, it is assigned to Class 1.
If (x; + 1)* + x3 < 1, it s assigned to Class 2.
Elsewhere, it is assigned to Class 3.

Figure 5 visualizes Gaussian RBF SVM classification for this three-class Monte-Carlo dataset.
As in the nonlinear case with two classes, the variable plot(right) shows correctly that X; and X, are
crucial and that X3 is irrelevant in forming the classification. Moreover, the observation plot with
classification boundary(left) manifests the excellent performance of the nonlinear classification.

Ezxzample 6. Olive Oils data from four South areas of Italy The Olive Oils data consists of
eight fatty acid composition measurements (palmitic, palmitoleic, stearic, oleic, linoleic, linolenic,
arachidic, and eicosenoic) in three regions (North, South, Sardina), which can be divided into nine
areas (Cook and Swayne, 2007). In this example, we restrict our attention to the data from South
region which is divided into four areas (Calabria, North-Apulia, Sicily, South-Apulia). Thus the
number of classes is four.
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Figure 5: Visualization of RBF SVM classification for the Monte-Carlo dataset. Dark solid curve is the classifi-
cation boundary. Dotted curves denote probability contours at the 0.9 level.
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Figure 6: Visualization of the linear SVM classification for Italian Olive Oils data from Four Regions (Calabria,
North-Apulia, Sicily, South-Apulia). Dark solid curve is the classification boundary. Dotted curves denote
probability contours at the 0.9 level.

Figure 6 shows classification map of the linear SVM classification. From the map, we can see that
Sicily oils are duplicated with other area oils. In their graphical analysis of the same dataset, Cook
and Swayne (2007, p.99) commented that Sicily oils used borrowed olives from neighboring areas.
Setting aside Sicily oils, North-Apulia, Calabria, and South-Apulia oils are lined up from Upper-Left
to Lower-Right, corresponding to contrasting directions of “oleic” and “palmitoleic”, respectively.

5. Concluding Remarks

For the m-class SVM classification, the matrix G of (4.1) formed with all p x 1 gradient vectors of
m(m — 1)/2 classification functions which are determined by 2ok &y Lk kz] SUpPport vectors, could have
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m(m — 1)/2 - n columns. Hence, in the case of large n, we need a big storage for G*. Such scalability
problem, however, does not affect the computation much since we compute eigenvalue-eigenvector
decomposition of G'G which is p x p.

In all plots of this paper, we projected SVM classifications onto the 2D subspace for brevity of
visual presentations. But our methods can be easily extended to yield the 3D display, that may be
needed when the explained proportion by the first two dimensions is not large enough. The explained
proportions in Figures 1, 2, 3, 4, 5 and 6 are 100%, 100%, 99.1%, 97.9%, 97.3%, 76.7%, respec-
tively. The 3D display for the linear SVM classification for the four-class Olive Qils data would have
explained 94.5% of all gradient vectors.
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