• Title/Summary/Keyword: Multiclass Support Vector Machines

Search Result 13, Processing Time 0.024 seconds

Customer Level Classification Model Using Ordinal Multiclass Support Vector Machines

  • Kim, Kyoung-Jae;Ahn, Hyun-Chul
    • Asia pacific journal of information systems
    • /
    • v.20 no.2
    • /
    • pp.23-37
    • /
    • 2010
  • Conventional Support Vector Machines (SVMs) have been utilized as classifiers for binary classification problems. However, certain real world problems, including corporate bond rating, cannot be addressed by binary classifiers because these are multi-class problems. For this reason, numerous studies have attempted to transform the original SVM into a multiclass classifier. These studies, however, have only considered nominal classification problems. Thus, these approaches have been limited by the existence of multiclass classification problems where classes are not nominal but ordinal in real world, such as corporate bond rating and multiclass customer classification. In this study, we adopt a novel multiclass SVM which can address ordinal classification problems using ordinal pairwise partitioning (OPP). The proposed model in our study may use fewer classifiers, but it classifies more accurately because it considers the characteristics of the order of the classes. Although it can be applied to all kinds of ordinal multiclass classification problems, most prior studies have applied it to finance area like bond rating. Thus, this study applies it to a real world customer level classification case for implementing customer relationship management. The result shows that the ordinal multiclass SVM model may also be effective for customer level classification.

Multiclass Support Vector Machines with SCAD

  • Jung, Kang-Mo
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.5
    • /
    • pp.655-662
    • /
    • 2012
  • Classification is an important research field in pattern recognition with high-dimensional predictors. The support vector machine(SVM) is a penalized feature selector and classifier. It is based on the hinge loss function, the non-convex penalty function, and the smoothly clipped absolute deviation(SCAD) suggested by Fan and Li (2001). We developed the algorithm for the multiclass SVM with the SCAD penalty function using the local quadratic approximation. For multiclass problems we compared the performance of the SVM with the $L_1$, $L_2$ penalty functions and the developed method.

Density based Fuzzy Support Vector Machines for multicategory Pattern Classification (밀도에 기반한 펴지 서포트 벡터 머신을 이용한 멀티 카데고리에서의 패턴 분류)

  • Park Jong-Hoon;Choi Byung-In;Rhee Frank Chung-Hoon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.11a
    • /
    • pp.251-254
    • /
    • 2006
  • 본 논문은 multiclass 문제에서 기존에 나와 있는 fuzzy support vector mahchines 이 decision boundary 를 설정하는데 있어 모든 훈련 데이터에 대해서 바람직한 decision boundary 를 만들지 못하므로 그러한 경우를 예로 제시한다. 그리고 그에 대한 개선점으로 밀도를 이용해 decision boundary 를 조정하여 기존 FSVM 의 decision boundary 보다 더 타당한 decision boundary 를 설정하는 것을 보인다.

  • PDF

LS-SVM for large data sets

  • Park, Hongrak;Hwang, Hyungtae;Kim, Byungju
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.2
    • /
    • pp.549-557
    • /
    • 2016
  • In this paper we propose multiclassification method for large data sets by ensembling least squares support vector machines (LS-SVM) with principal components instead of raw input vector. We use the revised one-vs-all method for multiclassification, which is one of voting scheme based on combining several binary classifications. The revised one-vs-all method is performed by using the hat matrix of LS-SVM ensemble, which is obtained by ensembling LS-SVMs trained using each random sample from the whole large training data. The leave-one-out cross validation (CV) function is used for the optimal values of hyper-parameters which affect the performance of multiclass LS-SVM ensemble. We present the generalized cross validation function to reduce computational burden of leave-one-out CV functions. Experimental results from real data sets are then obtained to illustrate the performance of the proposed multiclass LS-SVM ensemble.

A model-free soft classification with a functional predictor

  • Lee, Eugene;Shin, Seung Jun
    • Communications for Statistical Applications and Methods
    • /
    • v.26 no.6
    • /
    • pp.635-644
    • /
    • 2019
  • Class probability is a fundamental target in classification that contains complete classification information. In this article, we propose a class probability estimation method when the predictor is functional. Motivated by Wang et al. (Biometrika, 95, 149-167, 2007), our estimator is obtained by training a sequence of functional weighted support vector machines (FWSVM) with different weights, which can be justified by the Fisher consistency of the hinge loss. The proposed method can be extended to multiclass classification via pairwise coupling proposed by Wu et al. (Journal of Machine Learning Research, 5, 975-1005, 2004). The use of FWSVM makes our method model-free as well as computationally efficient due to the piecewise linearity of the FWSVM solutions as functions of the weight. Numerical investigation to both synthetic and real data show the advantageous performance of the proposed method.

Weighted Support Vector Machines with the SCAD Penalty

  • Jung, Kang-Mo
    • Communications for Statistical Applications and Methods
    • /
    • v.20 no.6
    • /
    • pp.481-490
    • /
    • 2013
  • Classification is an important research area as data can be easily obtained even if the number of predictors becomes huge. The support vector machine(SVM) is widely used to classify a subject into a predetermined group because it gives sound theoretical background and better performance than other methods in many applications. The SVM can be viewed as a penalized method with the hinge loss function and penalty functions. Instead of $L_2$ penalty function Fan and Li (2001) proposed the smoothly clipped absolute deviation(SCAD) satisfying good statistical properties. Despite the ability of SVMs, they have drawbacks of non-robustness when there are outliers in the data. We develop a robust SVM method using a weight function with the SCAD penalty function based on the local quadratic approximation. We compare the performance of the proposed SVM with the SVM using the $L_1$ and $L_2$ penalty functions.

Fault Classification for Rotating Machinery Using Support Vector Machines with Optimal Features Corresponding to Each Fault Type (결함유형별 최적 특징과 Support Vector Machine 을 이용한 회전기계 결함 분류)

  • Kim, Yang-Seok;Lee, Do-Hwan;Kim, Seong-Kook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.11
    • /
    • pp.1681-1689
    • /
    • 2010
  • Several studies on the use of Support Vector Machines (SVMs) for diagnosing rotating machinery have been successfully carried out, but the fault classification depends on the input features as well as a multi-classification scheme, binary optimizer, kernel function, and the parameter to be used in the kernel function. Most of the published papers on multiclass SVM applications report the use of the same features to classify the faults. In this study, simple statistical features are determined on the basis of time domain vibration signals for various fault conditions, and the optimal features for each fault condition are selected. Then, the optimal features are used in the SVM training and in the classification of each fault condition. Simulation results using experimental data show that the results of the proposed stepwise classification approach with a relatively short training time are comparable to those for a single multi-class SVM.

Corporate Bond Rating Using Various Multiclass Support Vector Machines (다양한 다분류 SVM을 적용한 기업채권평가)

  • Ahn, Hyun-Chul;Kim, Kyoung-Jae
    • Asia pacific journal of information systems
    • /
    • v.19 no.2
    • /
    • pp.157-178
    • /
    • 2009
  • Corporate credit rating is a very important factor in the market for corporate debt. Information concerning corporate operations is often disseminated to market participants through the changes in credit ratings that are published by professional rating agencies, such as Standard and Poor's (S&P) and Moody's Investor Service. Since these agencies generally require a large fee for the service, and the periodically provided ratings sometimes do not reflect the default risk of the company at the time, it may be advantageous for bond-market participants to be able to classify credit ratings before the agencies actually publish them. As a result, it is very important for companies (especially, financial companies) to develop a proper model of credit rating. From a technical perspective, the credit rating constitutes a typical, multiclass, classification problem because rating agencies generally have ten or more categories of ratings. For example, S&P's ratings range from AAA for the highest-quality bonds to D for the lowest-quality bonds. The professional rating agencies emphasize the importance of analysts' subjective judgments in the determination of credit ratings. However, in practice, a mathematical model that uses the financial variables of companies plays an important role in determining credit ratings, since it is convenient to apply and cost efficient. These financial variables include the ratios that represent a company's leverage status, liquidity status, and profitability status. Several statistical and artificial intelligence (AI) techniques have been applied as tools for predicting credit ratings. Among them, artificial neural networks are most prevalent in the area of finance because of their broad applicability to many business problems and their preeminent ability to adapt. However, artificial neural networks also have many defects, including the difficulty in determining the values of the control parameters and the number of processing elements in the layer as well as the risk of over-fitting. Of late, because of their robustness and high accuracy, support vector machines (SVMs) have become popular as a solution for problems with generating accurate prediction. An SVM's solution may be globally optimal because SVMs seek to minimize structural risk. On the other hand, artificial neural network models may tend to find locally optimal solutions because they seek to minimize empirical risk. In addition, no parameters need to be tuned in SVMs, barring the upper bound for non-separable cases in linear SVMs. Since SVMs were originally devised for binary classification, however they are not intrinsically geared for multiclass classifications as in credit ratings. Thus, researchers have tried to extend the original SVM to multiclass classification. Hitherto, a variety of techniques to extend standard SVMs to multiclass SVMs (MSVMs) has been proposed in the literature Only a few types of MSVM are, however, tested using prior studies that apply MSVMs to credit ratings studies. In this study, we examined six different techniques of MSVMs: (1) One-Against-One, (2) One-Against-AIL (3) DAGSVM, (4) ECOC, (5) Method of Weston and Watkins, and (6) Method of Crammer and Singer. In addition, we examined the prediction accuracy of some modified version of conventional MSVM techniques. To find the most appropriate technique of MSVMs for corporate bond rating, we applied all the techniques of MSVMs to a real-world case of credit rating in Korea. The best application is in corporate bond rating, which is the most frequently studied area of credit rating for specific debt issues or other financial obligations. For our study the research data were collected from National Information and Credit Evaluation, Inc., a major bond-rating company in Korea. The data set is comprised of the bond-ratings for the year 2002 and various financial variables for 1,295 companies from the manufacturing industry in Korea. We compared the results of these techniques with one another, and with those of traditional methods for credit ratings, such as multiple discriminant analysis (MDA), multinomial logistic regression (MLOGIT), and artificial neural networks (ANNs). As a result, we found that DAGSVM with an ordered list was the best approach for the prediction of bond rating. In addition, we found that the modified version of ECOC approach can yield higher prediction accuracy for the cases showing clear patterns.

Dynamic gesture recognition using a model-based temporal self-similarity and its application to taebo gesture recognition

  • Lee, Kyoung-Mi;Won, Hey-Min
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.11
    • /
    • pp.2824-2838
    • /
    • 2013
  • There has been a lot of attention paid recently to analyze dynamic human gestures that vary over time. Most attention to dynamic gestures concerns with spatio-temporal features, as compared to analyzing each frame of gestures separately. For accurate dynamic gesture recognition, motion feature extraction algorithms need to find representative features that uniquely identify time-varying gestures. This paper proposes a new feature-extraction algorithm using temporal self-similarity based on a hierarchical human model. Because a conventional temporal self-similarity method computes a whole movement among the continuous frames, the conventional temporal self-similarity method cannot recognize different gestures with the same amount of movement. The proposed model-based temporal self-similarity method groups body parts of a hierarchical model into several sets and calculates movements for each set. While recognition results can depend on how the sets are made, the best way to find optimal sets is to separate frequently used body parts from less-used body parts. Then, we apply a multiclass support vector machine whose optimization algorithm is based on structural support vector machines. In this paper, the effectiveness of the proposed feature extraction algorithm is demonstrated in an application for taebo gesture recognition. We show that the model-based temporal self-similarity method can overcome the shortcomings of the conventional temporal self-similarity method and the recognition results of the model-based method are superior to that of the conventional method.

Optimization of Multiclass Support Vector Machine using Genetic Algorithm: Application to the Prediction of Corporate Credit Rating (유전자 알고리즘을 이용한 다분류 SVM의 최적화: 기업신용등급 예측에의 응용)

  • Ahn, Hyunchul
    • Information Systems Review
    • /
    • v.16 no.3
    • /
    • pp.161-177
    • /
    • 2014
  • Corporate credit rating assessment consists of complicated processes in which various factors describing a company are taken into consideration. Such assessment is known to be very expensive since domain experts should be employed to assess the ratings. As a result, the data-driven corporate credit rating prediction using statistical and artificial intelligence (AI) techniques has received considerable attention from researchers and practitioners. In particular, statistical methods such as multiple discriminant analysis (MDA) and multinomial logistic regression analysis (MLOGIT), and AI methods including case-based reasoning (CBR), artificial neural network (ANN), and multiclass support vector machine (MSVM) have been applied to corporate credit rating.2) Among them, MSVM has recently become popular because of its robustness and high prediction accuracy. In this study, we propose a novel optimized MSVM model, and appy it to corporate credit rating prediction in order to enhance the accuracy. Our model, named 'GAMSVM (Genetic Algorithm-optimized Multiclass Support Vector Machine),' is designed to simultaneously optimize the kernel parameters and the feature subset selection. Prior studies like Lorena and de Carvalho (2008), and Chatterjee (2013) show that proper kernel parameters may improve the performance of MSVMs. Also, the results from the studies such as Shieh and Yang (2008) and Chatterjee (2013) imply that appropriate feature selection may lead to higher prediction accuracy. Based on these prior studies, we propose to apply GAMSVM to corporate credit rating prediction. As a tool for optimizing the kernel parameters and the feature subset selection, we suggest genetic algorithm (GA). GA is known as an efficient and effective search method that attempts to simulate the biological evolution phenomenon. By applying genetic operations such as selection, crossover, and mutation, it is designed to gradually improve the search results. Especially, mutation operator prevents GA from falling into the local optima, thus we can find the globally optimal or near-optimal solution using it. GA has popularly been applied to search optimal parameters or feature subset selections of AI techniques including MSVM. With these reasons, we also adopt GA as an optimization tool. To empirically validate the usefulness of GAMSVM, we applied it to a real-world case of credit rating in Korea. Our application is in bond rating, which is the most frequently studied area of credit rating for specific debt issues or other financial obligations. The experimental dataset was collected from a large credit rating company in South Korea. It contained 39 financial ratios of 1,295 companies in the manufacturing industry, and their credit ratings. Using various statistical methods including the one-way ANOVA and the stepwise MDA, we selected 14 financial ratios as the candidate independent variables. The dependent variable, i.e. credit rating, was labeled as four classes: 1(A1); 2(A2); 3(A3); 4(B and C). 80 percent of total data for each class was used for training, and remaining 20 percent was used for validation. And, to overcome small sample size, we applied five-fold cross validation to our dataset. In order to examine the competitiveness of the proposed model, we also experimented several comparative models including MDA, MLOGIT, CBR, ANN and MSVM. In case of MSVM, we adopted One-Against-One (OAO) and DAGSVM (Directed Acyclic Graph SVM) approaches because they are known to be the most accurate approaches among various MSVM approaches. GAMSVM was implemented using LIBSVM-an open-source software, and Evolver 5.5-a commercial software enables GA. Other comparative models were experimented using various statistical and AI packages such as SPSS for Windows, Neuroshell, and Microsoft Excel VBA (Visual Basic for Applications). Experimental results showed that the proposed model-GAMSVM-outperformed all the competitive models. In addition, the model was found to use less independent variables, but to show higher accuracy. In our experiments, five variables such as X7 (total debt), X9 (sales per employee), X13 (years after founded), X15 (accumulated earning to total asset), and X39 (the index related to the cash flows from operating activity) were found to be the most important factors in predicting the corporate credit ratings. However, the values of the finally selected kernel parameters were found to be almost same among the data subsets. To examine whether the predictive performance of GAMSVM was significantly greater than those of other models, we used the McNemar test. As a result, we found that GAMSVM was better than MDA, MLOGIT, CBR, and ANN at the 1% significance level, and better than OAO and DAGSVM at the 5% significance level.