• Title/Summary/Keyword: Multichannel Feedback

Search Result 12, Processing Time 0.022 seconds

Multichannel Active Control of Honeycomb Trim Panels for Aircrafts (항공기용 하니콤 트림판넬의 다채널 능동제어)

  • Hong, Chin-Suk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.12 s.117
    • /
    • pp.1252-1261
    • /
    • 2006
  • This paper summarizes theoretical work on the multichannel decentralized feedback control of sound radiation from aircraft trim panels using piezoceramic actuators. The aircraft trim panels are generally honeycomb structures designed to meet the design requirement of low weight and high stiffness. They are resiliently-mounted to the fuselage for the passive reduction of noise transmission. It is motivated by the localization of reduction in vibration of single channel active trim panels. 12-channel decentralized feedback control systems are investigated in terms of the reduction of noise and vibration for three configurations of sensor actuator pairs. Local coupling of the closely-spaced sensor and actuator pairs was modeled using single degree of freedom systems. The multichannel control system is characterized using the state-space model. For the stability point of view, the relative stability or robustness is evaluated by comparing the real part of eigenvalues of the system matrix for the three configurations. The control performance is also evaluated and compared for the three configurations. It is found that the multichannel system can lead to the globalization of the reduction in vibration and radiated noise. It does not appear to yield a significant improvement in the vibration because of decreased gain margin. However, the reduction in the radiated noise is remarkably improved due to the variation of the vibration pattern with the actuation configurations.

Active Control of Honeycomb Trim Panels for Aircrafts (항공기용 하니콤 트림판넬의 능동제어)

  • Elliott Stephan J.;Jeong, W.B.;Hong, Chin-Suk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.464-473
    • /
    • 2006
  • This paper summarises theoretical and experimental work on the feedback control of sound radiation from honeycomb panels using piezoceramic actuators. It is motivated by the problem of sound transmission in aircraft, specifically the active control of trim panels. Trim panels are generally honeycomb structures designed to meet the design requirement of low weight and high stiffness. They are resiliently-mounted to the fuselage for the passive reduction of noise transmission. Local coupling of the closely-spaced sensor and actuator was observed experimentally and modelled using a single degree of freedom system. The effect of the local coupling was to roll-off the response between the actuator and sensor at high frequencies, so that a feedback control system can have high gain margins. Unfortunately, only relatively poor global performance is then achieved because of localisation of reduction around the actuator. This localisation prompts the investigation of a multichannel active control system. Globalised reduction was predicted using a model of 12 channel direct velocity feedback control. The multichannel system, however, does not appear to yield a significant improvement in the performance because of decreased gain margin.

  • PDF

Feedback Circuit of Maximum LED Channel String Voltage Detection Converter for Energy Saving on Multichannel LED Module (Multi Channel LED 조명 Module 구동에서 최대 효율을 위한 최대 Channel 전압 감지회로)

  • Kim, Hyun-Sik;Kim, Ki-Woon;Kim, Gi-Hoon;Kim, Yu-Sin;Song, Sang-Bin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.11
    • /
    • pp.938-941
    • /
    • 2012
  • LED is divided to multichannel in order not to exceed a certain voltage in aspects of electric standard. However, it's not possible to know in accordance with what channel SMPS controls the constant voltage and current. In order to solve this problem, it needs to detect the maximum LED String voltage which is applied to LED control circuit, and it is possible to minimize the voltage drop when a difference of LED string voltage occurs by each channel if LED is controlled by the maximum LED string voltage detected. In addition, it is also possible to maximize the efficiency of LED if change LED voltage by detecting the maximum voltage. Feasibility of this claim was verified through implementation of the circuit.

Adaptive Bilinear Lattice Filter(I)-Bilinear Lattice Structure (적응 쌍선형 격자필터(I) - 쌍선형 격자구조)

  • Heung Ki Baik
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.29B no.1
    • /
    • pp.26-33
    • /
    • 1992
  • This paper presents lattice structure of bilinear filter and the conversion equations from lattice parameters to direct-form parameters. Billnear models are attractive for adaptive filtering applications because they can approximate a large class of nonlinear systems adequately, and usually with considerable parsimony in the number of coefficients required. The lattice filter formulation transforms the nonlinear filtering problem into an equivalent multichannel linear filtering problem and then uses multichannel lattice filtering algorithms to solve the nonlinear filtering problem. The lattice filters perform a Gram-Schmidt orthogonalization of the input data and have very good easily extended to more general nonlinear output feedback structures.

  • PDF

Implementation of Adaptive Feedback Cancellation Algorithm for Multichannel Digital Hearing Aid (다채널 디지털 보청기에 적용 가능한 Adaptive Feedback Cancellation 알고리즘 구현)

  • Jeon, Shin-Hyuk;Ji, You-Na;Park, Young-Cheol
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.1
    • /
    • pp.102-110
    • /
    • 2017
  • In this paper, we have implemented an real-time adaptive feedback cancellation(AFC) algorithm that can be applied to multi-channel digital hearing aid. Multichannel digital hearing aid typically use the FFT filterbank based Wide Dynamic Range Compression(WDRC) algorithm to compensate for hearing loss. The implemented real-time acoustic feedback cancellation algorithm has one integrated structure using the same FFT filter bank with WDRC, which can be beneficial in terms of computation affecting the hearing aid battery life. In addition, when the AFC fails to operate due to nonlinear input and output, the reduction gain is applied to improve robustness in practical environment. The implemented algorithm can be further improved by adding various signal processing algorithm such as speech enhancement.

Implementation of Multichannel Digital Hearing Aid Algorithm Development Platform using Simulink (Simulink 기반 다채널 디지털 보청기 알고리즘 개발 플랫폼 구현)

  • Byun, Jun;Min, Ji-hwan;Cha, Tae-hwan;Ji, You-na;Park, Young-cheol
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.2
    • /
    • pp.205-212
    • /
    • 2016
  • In this paper, we implement the development platform of multichannel digital hearing aid algorithm using Simulink provided by Matlab. The digital hearing aids are considered medical devices designed to compensate for hearing loss, they need to be correctly selected, to help a person who has difficulty in hearing. The development platform that implemented in this paper, includes WOLA filterbank for analysis/synthesis of input signal, Wide dynamic range compression for hearing loss compensation and adaptive filter for feedback cancellation. Using the development platform, algorithm parameters for each block can be set depending on the hearing aid user. Thus it is possible to test the algorithm before the machine language. As a result, the time for algorithm development can be saved and performance and computational complexity can be optimized.

Performance Comparison of Image Transmission in Underwater Acoustic Environment (수중 음향 환경에서의 영상 전송 성능 비교분석)

  • Lee, Seung-Woo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.19-29
    • /
    • 2008
  • Underwater acoustic(UWA) communication is one of the most difficult field in terms of severe channel environments such as multipath propagation, high temporal and spatial variability of channel conditions. Therefore, it is important to model and analyze the characteristics of underwater acoustic channel such as multipath propagation, transmission loss, reverberation, and ambient noise. In this paper, UWA communication channel is modeled with a ray tracing method and applied to image transmission. Quadrature phase shift keying(QPSK) and multichannel decision feedback equalizer(DFE) are utilized as phase-coherent modulation method and equalization technique, respectively. The objective is to improve the performance of the image transmission using vertical sensor array instead of single sensor in the viewpoint of bit error rate(BER), constellation diagram, and received image quality.

Evaluation of Image Transmission for Underwater Acoustic Communication

  • Lee Seung-Woo;Choi Byung-Woong;Shin Chang-Hong;Kim Jeong-Soo;Lee Kyun-Kyung
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.110-113
    • /
    • 2004
  • Underwater acoustic(UWA) communication is one of the most difficult field because of several factors such as multipath propagation, high temporal and spatial variability of channel conditions. Therefore, it is important to model and analyze the characteristics of underwater acoustic channel such as multipath propagation, transmission loss, reverberation, and ambient noise. In this paper, UWA communication channel is modeled with a ray tracing method and applied to image transmission. Quadrature phase shift keying(QPSK) and multichannel decision feedback equalizer(DFE) are utilized as phase-coherent modulation method and equalization technique, respectively. The objective is to improve the performance of vertical sensor array than that of single sensor in the viewpoint of bit error rate(BER), constellation output, and received image quality.

  • PDF

A semispherical SQUID magnetometer system using high sensitivity double relaxation oscillation SQUIDs for magnetoencephalographic measurements

  • Lee, Yong-Ho;Hyukchan Kwon;Kim, Jin-Mok;Kim, Kwoong;Park, Yong-Ki
    • Progress in Superconductivity and Cryogenics
    • /
    • v.5 no.1
    • /
    • pp.21-26
    • /
    • 2003
  • We designed and constructed a multichannel superconducting quantum interference device (SQUID) magnetometer system to measure magnetic fields from the human brain. We used a new type of SQUID, the double relaxation oscillation SQUID (DROS). With high flux-to-voltage transfers of the DROS, about 10 times larger than the dc SQUIDs, simple flux-locked loop circuits could be used for SQUID operation. Also the large modulation voltage of the DROS, typically being 100 $mutextrm{V}$, enabled stable flux-locked loop operation against the thermal offset voltage drift of the preamplifier. The magnetometers were fabricated using the Nb/AlOx/Nb junction technology. The SQUID system consists of 37 signal magnetometers, distributed on a semispherical surface, and 11 reference channels were installed to pickup background noises. External feedback was used to eliminate the magnetic coupling with the adjacent channels. The liquid helium dewar has a capacity of 29 L and boil-off rate of about 4 L/d with the total 48 channel insert. The magnetometer system has an average noise level of 3 fT/√Hz at 100 Hz, inside a shielded loon, and was applied to measure auditory-evoked fields.

Equi-spaced multichannel stabilization with a reference frequency from ($^13C_2H_2$) molecules and optical fiber fabry-perot filter (아세칠렌가스($^13C_2H_2$)분자의 흡수선을 이용한 기준 광신호 및 광섬유 파브리-페로 필터에 의한 등간격 다중채널의 안정화)

  • 이현재;류갑열;이동호;박창수
    • Korean Journal of Optics and Photonics
    • /
    • v.8 no.1
    • /
    • pp.68-72
    • /
    • 1997
  • Using one of the absorption lines of $^{13}C_2H_2$ molecules near the zero dispersion wavelength(1549.49nm) of dispersion shifted fiber, we stabilized center frequency of an optical fiber Fabry-Perot filter. The free spectral range of the filter is 100 GHz for 100 GHz channel allocation. For equi-spaced three channel multiplexing, channel locking of three DFB-LDs to transmission peaks of the fiber Fabry-Perot filter was tried. To investigate the effect of dithering current applied to each DFB-LD, the change of DFB-LD linewidth was measured.

  • PDF