• Title/Summary/Keyword: Multibody Mechanical System

Search Result 137, Processing Time 0.026 seconds

Analysis of Dynamic Characteristics for Concept Design of Independent-Wheel Type Ultra-High-Speed Train (독립차륜형 초고속 열차 개념 설계안의 동특성 해석)

  • Lee, Jin-Hee;Kim, Nam-Po;Sim, Kyung-Seok;Park, Tae-Won
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.1
    • /
    • pp.28-34
    • /
    • 2014
  • In this paper, a concept design of a rail type ultra-high-speed train is proposed and its dynamic characteristics are analyzed. Instead of the existing solid axle, a new type bogie system and independently rotating wheels are applied in the proposed train. In order to analyze the dynamic characteristics, a multibody dynamic model of a vehicle is developed and the basic validity is verified by eigenvalue analysis. Also, it is shown that the critical speed is improved in comparison to that of existing high-speed train model HEMU-430X. Finally, through 7000R curved track driving analysis at a speed of 550 km/h, the lateral force of the wheels and the derailment quotient are estimated and the applicability of the new concept railway vehicle is confirmed.

THE CRASH BEHAVIOR ANALYSIS OF TRAIN VIRTUAL TESTING MODEL

  • Kim, Seung-Rok;Goo, Jung-Seo;Kwon, Tae-Soo;Kim, Ki-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.590-595
    • /
    • 2007
  • It is important to predict the collision behavior of a train consist to improve its crashworthiness. To analyze crash behavior of train, four kinds of methods are mainly used so far. The first is method using multibody dynamics to predict the gross motion of the train set. The second uses 3D FE model to apply the section analysis method in order. The third is used to deduce design specification and evaluate the crashworhiness of a train by using 1D model. The last is to constitute 2D model to check overriding and coupling devices. The train evaluation procedures are so complex that it is difficult to understand or deal with. In this study, VTM for railway train was introduced to simplify the procedures. VTM involves 3D models, 1D models and dynamic components such as suspension and coupling. The method using hybrid concept model makes it possible to do all the things that are mentioned above. To analyze crash behavior tendency of VTM, the model was simulated and the simulation results were discussed.

  • PDF

Optimization of a Cam Profile in a Circuit Breaker to Improve Latching Performance (캠 윤곽 최적설계를 통한 차단기 래칭 성능 향상)

  • Lee, Jae Ju;Jang, Jin Seok;Park, Hyun Gyu;Yoo, Wan Suk;Kim, Hyun Woo;Bae, Byung Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.1
    • /
    • pp.73-79
    • /
    • 2016
  • Higher circuit breaker safety standards can be obtained by increasing the sustaining time of the latching section. This time increase is achieved through velocity reduction after contacting when the closing mechanism operates. The potential for the re-closing phenomenon to occur is also reduced by obtaining time to return open latch. In this study, the sustaining time for the latching section was increased through cam profile optimization based on the displacement response of the moving parts. In addition, the existing performance velocity was also satisfied. A multibody dynamics model of the circuit breaker was developed using ADAMS. To validate the model, simulation results were compared to experiment results. Then, cam profile optimization was carried out using an optimal design program PIAnO. Design variables selected included the radial direction of the cam. Design sensitivity analysis was carried out by design section as well. As a result of optimization, the sustaining time for the latching section was increased.

A Study on Efficiency Improvement of the Catenary-Pantograph Dynamic Interaction Analysis Program using Shift Forward Method (Shift Forward 방법을 이용한 가선계-판토그래프 동적 상호작용 해석 프로그램의 효율성 향상에 관한 연구)

  • Lee, Jin-Hee;Park, Tae-Won
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.6
    • /
    • pp.572-578
    • /
    • 2012
  • In the electric railway vehicles, securing stable current collection performance is an important factor which determines the quality of operation and the maximum speed. In order to predict such current collection performance, various analysis methods have been proposed for a long time. Also, investigations for improving the accuracy of the results and the efficiency of the analysis process have been performed. In this paper, a method for the efficiency improvement has been proposed. This method is based on the basic concept that the system equations of motion of a catenary numerical model include only interactive range with a pantograph. In this paper, an algorithm and generalized process for applying proposed method are introduced. Also, validity of the results and utility of the method was verified and studied.

Dynamic Response Simulation of a Heavy Cargo Suspended by Parallel Connected Floating Cranes (병렬 연결된 해상 크레인을 이용한 대형 중량물 인양 작업의 동적 거동 계산 시뮬레이션)

  • Cha, Ju-Hwan;Ku, Nam-Kug;Roh, Myung-Il;Lee, Kyu-Yeul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.6
    • /
    • pp.681-689
    • /
    • 2012
  • In this study, we performed a simulation of the dynamic response of a multibody system to calculate the tension acting on wire ropes connecting floating cranes and a heavy cargo such as a Giga Block weighing over 5000 tons when the cargo is salvaged using parallel connected floating cranes. In this simulation, we supposed that the motion of the floating cranes, barge ship, and heavy cargo has 6 degrees of freedom and that the interaction is determined by constraints among them. In addition, we considered independent hydrostatic and hydrodynamic forces as external forces acting on the floating cranes and barge ship. The simulation result can be a basis for verifying the safety of construction methods in which heavy cargo is salvaged by parallel connected floating cranes, and it can also be used to guide the development of such construction methods.

Modeling of Multi-Boom Floating Crane for Lifting Analysis of Offshore Wind Turbine (해상 풍력 발전기 리프팅 해석을 위한 해상 크레인 멀티 붐 모델링)

  • Park, Kwang-Phil;Cha, Ju-Hwan;Lee, Kyu-Yeul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.1
    • /
    • pp.115-120
    • /
    • 2011
  • The dynamic responses of a 5 MW wind turbine lifted by a floating crane with two elastic booms are analyzed. Dynamic equations of motions of a multibody system that consists of a floating crane, two elastic booms, and a wind turbine are derived. The six-degree-of-freedom (DOF) motions for the floating crane and the wind turbine are considered in the equations of motions. The hydrostatic force, the hydrodynamic force due to a regular wave, the mooring force, the wire rope force, and the gravitational force are considered as external forces. By solving the equations numerically, the dynamic responses of cargo are simulated. The simulation results are compared with those in the case of one elastic boom. Finally, the dynamic responses of the wind turbine lifted by the floating crane are analyzed under regular wave condition.

Estimation of Human Lower-Extremity Muscle Force Under Uncertainty While Rising from a Chair (의자에서 일어서는 동작 시 불확실성을 고려한 인체 하지부 근력 해석)

  • Jo, Young Nam;Kang, Moon Jeong;Chae, Je Wook;Yoo, Hong Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.10
    • /
    • pp.1147-1155
    • /
    • 2014
  • Biomechanical models are often used to predict muscle and joint forces in the human body. For estimation of muscle forces, the body and muscle properties have to be known. However, these properties are difficult to measure and differ from person to person. Therefore, it is necessary to predict the change in muscle forces depending on the body and muscle properties. The objective of the present study is to develop a numerical procedure for estimating the muscle forces in the human lower extremity under uncertainty of body and muscle properties during rising motion from a seated position. The human lower extremity is idealized as a multibody system in which eight Hill-type muscle force models are employed. Each model has four degrees of freedom and is constrained in the sagittal plane. The eight muscle forces are determined by minimizing the metabolic energy consumption during the rising motion. Uncertainty analysis is performed using a first-order reliability method. The one-standard-deviation range of agonistic muscle forces is calculated to be about 150-300 N.