• 제목/요약/키워드: MultiLayer Perceptron

Search Result 444, Processing Time 0.036 seconds

TCAD-머신러닝 기반 나노시트 FETs 컴팩트 모델링 (Compact Modeling for Nanosheet FET Based on TCAD-Machine Learning)

  • 송준혁;이운복;이종환
    • 반도체디스플레이기술학회지
    • /
    • 제22권4호
    • /
    • pp.136-141
    • /
    • 2023
  • The continuous shrinking of transistors in integrated circuits leads to difficulties in improving performance, resulting in the emerging transistors such as nanosheet field-effect transistors. In this paper, we propose a TCAD-machine learning framework of nanosheet FETs to model the current-voltage characteristics. Sentaurus TCAD simulations of nanosheet FETs are performed to obtain a large amount of device data. A machine learning model of I-V characteristics is trained using the multi-layer perceptron from these TCAD data. The weights and biases obtained from multi-layer perceptron are implemented in a PSPICE netlist to verify the accuracy of I-V and the DC transfer characteristics of a CMOS inverter. It is found that the proposed machine learning model is applicable to the prediction of nanosheet field-effect transistors device and circuit performance.

  • PDF

자기연상 다층퍼셉트론의 이상 탐지 성능에 대한 실험 (Experiments on the Novelty Detection Capability of Auto-Associative Multi-Layer Perceptron)

  • 이형주;황병호;조성준
    • 한국경영과학회:학술대회논문집
    • /
    • 대한산업공학회/한국경영과학회 2002년도 춘계공동학술대회
    • /
    • pp.632-638
    • /
    • 2002
  • In novelty detection, one attempts to discriminate abnormal patterns from normal ones. Novelty detection is quite difficult since, unlike usual two class classification problems, only normal patterns are available for training. Auto-Associative Multi-Layer Perceptron (AAMLP) has been shown to provide a good performance based upon the property that novel patterns usually have larger auto-associative errors. In this paper, we give a mathematical analysis of 2-layer AAMLP's output characteristics and empirical results of 2-layer and 4-layer AAMLPs. Various activation functions such as linear, saturated linear and sigmoid are compared. The 2-layer AAMLPs cannot identify non-linear boundaries while the 4-layer ones can. When the data distribution is multi-modal, then an ensemble of AAMLPs, each of which is trained with pre-clustered data is required. This paper contributes to understanding of AAMLP networks and leads to practical recommendations regarding its use.

  • PDF

협력적 추천을 위한 사용자와 항목 모델의 효율적인 통합 방법 ((Efficient Methods for Combining User and Article Models for Collaborative Recommendation))

  • 도영아;김종수;류정우;김명원
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제30권5_6호
    • /
    • pp.540-549
    • /
    • 2003
  • 협력적 추천에서는 일반적으로 사용자 모델과 항목 모델이 사용되어진다. 사용자 모델은 사용자들간의 선호도 상관관계를 학습하고, 추천하고자 하는 항목에 대한 다른 사용자들의 선호도를 기반으로 그 항목을 추천한다. 이와 유사한 방식으로 항목 모델은 항목들간의 선호도 상관관계를 학습하고, 다른 항목들간의 선호도를 기반으로 추천 받는 사용자에게 항목을 추천한다. 본 논문에서는 추천 성능의 향상을 위해서 사용자 모델과 항목 모델간의 다양한 통합 방법을 제안한다. 제안하는 통합 방법으로는 순차적, 병렬적 통합 방법, 퍼셉트론 또는 다층 퍼셉트론을 이용한 통합 방법, 퍼지 규칙을 이용한 통합 방법 그리고 BKS를 적용한 방법이다. 본 실험에서는 통합 모델을 위해서 다층 퍼셉트론을 이용하여 사용자와 항목 모델을 각각 학습한다. 다층 퍼셉트론은 최근접 이웃방법이나 연관 규칙을 이용한 방법과 같은 기존의 추천 방법보다 연관된 항목들간의 가중치를 학습할 수 있고, 기호 데이타와 수치 데이타를 쉽게 처리할 수 있는 장점이 있다. 본 논문에서는 통합된 모델이 어떠한 단일 모델보다도 우수하고, 실험을 통하여 다층 퍼셉트론을 이용한 통합 방법이 다른 통합 방법보다 효율적인 통합 방법임을 보여주고 있다.

변형된 혼합 밀도 네트워크를 이용한 비선형 근사 (Nonlinear Approximations Using Modified Mixture Density Networks)

  • 조원희;박주영
    • 한국지능시스템학회논문지
    • /
    • 제14권7호
    • /
    • pp.847-851
    • /
    • 2004
  • Bishop과 Nabnck에 의해 소개된 기존치 혼합 밀도 네트워크(Mixture Density Network)에서는 조건부 확률밀도 함수의 매개변수들(parameters)이 하나의 MLP(multi-layer perceptron)의 출력 벡터로 주어진다. 최근에는 변형된 혼합 밀도 네트워크(Modified Mixture Density Network)라고 하는 이름으로 조건부 확률밀도 함수의 선분포(priors), 조건부 평균(conditional means), 그리고 공분산(covariances) 등이 각각 독립적인 MLP의 출력벡터로 주어지는 경우를 다룬 연구가 보고된 바 있다. 본 논문에서는 조건부 평균이 입력에 관해 선형인 경우를 위한 버전에 대한 이론과 매트랩 프로그램 개발을 다룬다. 본 논문에서는 우선 일반적인 혼합 밀도 네트워크에 대해 간단히 설명하고, 혼합 밀도 네트워크의 출력인 다층 퍼셉트론의 매개변수를 각각 다른 다층 퍼셉트론에서 학습시키는 변형된 혼합 밀도 네트워크를 설명한 후, 각각 다른 다층 퍼셉트론을 통해 매개변수를 얻는 것은 동일하나 평균값은 선형함수를 통해 얻는 혼합 밀도 네트워크 버전을 소개한다. 그리고, 모의실험을 통하여 이러한 혼합 밀도 네트워크의 적용가능성에 대해 알아본다.

다층 퍼셉트론 신경망을 이용한 하드 디스크 결함 분포의 패턴 인식 (Pattern Recognition of Hard Disk Defect Distribution Using Multi-Layer Perceptron Network)

  • 문운철;이재두
    • 조명전기설비학회논문지
    • /
    • 제21권6호
    • /
    • pp.94-101
    • /
    • 2007
  • 하드 디스크(Hard Disk) 결함의 표준 패턴 클래스는 6가지로 분류되며, 이는 하드 디스크 생산 공정의 불량 처리 과정에서 중요한 역할을 수행한다. 본 논문에서는 다층 퍼셉트론(Multi-Layer Perceptron)을 이용한 하드 디스크 결함 분포의 패턴 인식 기법을 제시한다. 결함 분포로부터 5가지의 특징들을 추출하고, 이를 이용하여 퍼셉트론의 입력을 구성하였으며, 미리 분류된 표준 패턴 클래스를 이용하여 퍼셉트론의 출력을 구성하였다. 구성된 입출력 데이터들은 오차 역전파(Error Back-Propagation) 알고리듬을 통하여 다층 퍼셉트론의 학습에 사용되었다. 테스트 결과 제시된 신경망은 하드 디스크의 패턴 분류에 만족할 만한 성능을 나타내었다.

성능이 향상된 수정된 다층구조 영방향연상기억메모리 (Modified Multi-layer Bidirectional Associative Memory with High Performance)

  • 정동규;이수영
    • 전자공학회논문지B
    • /
    • 제30B권6호
    • /
    • pp.93-99
    • /
    • 1993
  • In previous paper we proposed a multi-layer bidirectional associative memory (MBAM) which is an extended model of the bidirectional associative memory (BAM) into a multilayer architecture. And we showed that the MBAM has the possibility to have binary storage for easy implementation. In this paper we present a MOdified MBAM(MOMBAM) with high performance compared to MBAM and multi-layer perceptron. The contents will include the architecture, the learning method, the computer simulation results for MOMBAM with MBAM and multi-layer perceptron, and the convergence properties shown by computer simulation examples.. And we will show that the proposed model can be used as classifier with a little restriction.

  • PDF

서포트 벡터 회귀를 이용한 제어기 설계 (Design of controller using Support Vector Regression)

  • 황지환;곽환주;박귀태
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2009년도 정보 및 제어 심포지움 논문집
    • /
    • pp.320-322
    • /
    • 2009
  • Support vector learning attracts great interests in the areas of pattern classification, function approximation, and abnormality detection. In this pater, we design the controller using support vector regression which has good properties in comparison with multi-layer perceptron or radial basis function. The applicability of the presented method is illustrated via an example simulation.

  • PDF

신경망이론은 이용한 폴리우레탄 코팅포 촉감의 예측 (Using Neural Networks to Predict the Sense of Touch of Polyurethane Coated Fabrics)

  • 이정순;신혜원
    • 한국의류학회지
    • /
    • 제26권1호
    • /
    • pp.152-159
    • /
    • 2002
  • Neural networks are used to predict the sense of touch of polyurethane coated fabrics. In this study, we used the multi layer perceptron (MLP) neural networks in Neural Connection. The learning algorithm for neural networks is back-propagation algorithm. We used 29 polyurethane coated fabrics to train the neural networks and 4 samples to test the neural networks. Input variables are 17 mechanical properties measured with KES-FB system, and output variable is the sense of touch of polyurethane coated fabrics. The influence of MLF function, the number of hidden layers, and the number of hidden nodes on the prediction accuracy is investigated. The results were as follows: MLP function, the number of hidden layer and the number of hidden nodes have some influence on the prediction accuracy. In this work, tangent function, the architecture of the double hidden layers and the 24-12-hidden nodes has the best prediction accuracy with the lowest RMS error. Using the neural networks to predict the sense of touch of polyurethane coated fabrics has hotter prediction accuracy than regression approach used in our previous study.

Hybrid Multi-layer Perceptron with Fuzzy Set-based PNs with the Aid of Symbolic Coding Genetic Algorithms

  • Roh, Seok-Beom;Oh, Sung-Kwun;Ahn, Tae-Chon
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.155-157
    • /
    • 2005
  • We propose a new category of hybrid multi-layer neural networks with hetero nodes such as Fuzzy Set based Polynomial Neurons (FSPNs) and Polynomial Neurons (PNs). These networks are based on a genetically optimized multi-layer perceptron. We develop a comprehensive design methodology involving mechanisms of genetic optimization and genetic algorithms, in particular. The augmented genetically optimized HFPNN (namely gHFPNN) results in a structurally optimized structure and comes with a higher level of flexibility in comparison to the one we encounter in the conventional HFPNN. The GA-based design procedure being applied at each layer of HFPNN leads to the selection of preferred nodes (FPNs or PNs) available within the HFPNN. In the sequel, two general optimization mechanisms are explored. First, the structural optimization is realized via GAs whereas the ensuing detailed parametric optimization is carried out in the setting of a standard least square method-based learning. The performance of the gHFPNNs quantified through experimentation where we use a number of modeling benchmarks-synthetic and experimental data already experimented with in fuzzy or neurofuzzy modeling.

  • PDF

MLP에 기반한 감정인식 모델 개발 (Development of Emotion Recognition Model based on Multi Layer Perceptron)

  • 이동훈;심귀보
    • 한국지능시스템학회논문지
    • /
    • 제16권3호
    • /
    • pp.372-377
    • /
    • 2006
  • 본 논문에서, 우리는 뇌파를 이용하여 사용자의 감정을 인식하는 감정인식 모델을 제안한다. 사용자의 감정을 인식하기 위해서는 우선 생체 데이터나 감정 데이터를 포함한 뇌파의 정량적인 데이터를 획득하는 방법이 필요하며 다음으로 획득된 뇌파를 통하여 현재 사용자의 감정 상태를 규명하는 패턴인식 기법이 중요한 문제가 된다. 본 논문에서는 뇌파를 통하여 현재 사용자의 감정 상태를 규명하고 인식할 수 있는 패턴인식 기법으로 Multi Layer Perceptron(MLP)을 사용한 패턴인식 기법을 사용한다. 본 논문에서 제안한 감정인식 모델의 실험을 위하여 특정 공간 내에서 여러 피험자의 감정별 뇌파를 측정하고, 측정된 뇌파로 집중도 및 안정도를 도출하여 유의미한 데이터로 감정 DB를 구축한다. 감정별 DB를 본 논문에서 제안한 감정인식 모델로 학습한 후 새로운 사용자의 뇌파로 현재 사용자의 감정을 인식한다. 마지막으로 피험자의 수와 은닉 노드의 수에 따른 인식률의 변화를 측정함으로서 뇌파를 이용한 감정인식 모델의 성능을 평가한다.