• 제목/요약/키워드: Multi-variable optimization

검색결과 126건 처리시간 0.026초

전자기와 열전달을 고려한 단상유도모터의 다분야 위상최적설계 (Multi-objective Topology Optimization of Single Phase Induction Motor Considering Electromangetics and Heat Transfer)

  • 심호경;문희곤;왕세명;김명균
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 B
    • /
    • pp.770-772
    • /
    • 2004
  • This paper presents a new approach regarding thermal characteristics associated with a design of the high efficiency motor. The adjoint variable design sensitivity equations for both electromagnetics with respect to permeability and heat transfer considering conduction and convection terms are derived using the continuum method. For multi-objective topology optimization, FEA is validated in terms of electromagnetics and heat transfer by experiments. The proposed method is applied to a single-phase induction motor of the scroll compressor in order to control the direction of heat flow by maximizing/minimizing the temperature of the target area while maintaining the efficiency.

  • PDF

수직하중을 고려한 자전거 프레임의 다중목적 최적설계 (Approximate Multi-Objective Optimization of Bike Frame Considering Normal Load)

  • 채윤식;이종수
    • 한국생산제조학회지
    • /
    • 제24권2호
    • /
    • pp.211-216
    • /
    • 2015
  • Recently, because of the growth in the leisure industry and interest in health, the demand for bicycles has increased. In this research, considering the vertical load on a bike frame under static state conditions, the deflection and mass of the bike frame were minimized by satisfying the service condition and performing optimization. The thickness of the bicycle-frame tube was set to a design variable, and its sensitivity was confirmed by an analysis of means (ANOM). To optimize the solution, a response-surface-method (RSM) model was constructed using D-Optimal and central composite design(CCD). The optimization was performed using a non-dominant sorting genetic algorithm (NSGA-II), and the optimal solution was verified by finite-element analysis.

Robust Predictive Feedback Control for Constrained Systems

  • Giovanini, Leonardo;Grimble, Michael
    • International Journal of Control, Automation, and Systems
    • /
    • 제2권4호
    • /
    • pp.407-422
    • /
    • 2004
  • A new method for the design of predictive controllers for SISO systems is presented. The proposed technique allows uncertainties and constraints to be concluded in the design of the control law. The goal is to design, at each sample instant, a predictive feedback control law that minimizes a performance measure and guarantees of constraints are satisfied for a set of models that describes the system to be controlled. The predictive controller consists of a finite horizon parametric-optimization problem with an additional constraint over the manipulated variable behavior. This is an end-constraint based approach that ensures the exponential stability of the closed-loop system. The inclusion of this additional constraint, in the on-line optimization algorithm, enables robust stability properties to be demonstrated for the closed-loop system. This is the case even though constraints and disturbances are present. Finally, simulation results are presented using a nonlinear continuous stirred tank reactor model.

가변 벌점함수 유전알고리즘을 이용한 고정밀 양면 연삭기 구조물의 경량 고강성화 최적설계 (Structural Design Optimization of a High-Precision Grinding Machine for Minimum Compliance and Lightweight Using Genetic Algorithm)

  • 홍진현;박종권;최영휴
    • 한국정밀공학회지
    • /
    • 제22권3호
    • /
    • pp.146-153
    • /
    • 2005
  • In this paper, a multi-step optimization using genetic algorithm with variable penalty function is introduced to the structural design optimization of a grinding machine. The design problem, in this study, is to find out the optimum configuration and dimensions of structural members which minimize the static compliance, the dynamic compliance, and the weight of the machine structure simultaneously under several design constraints such as dimensional constraints, maximum deflection limit, safety criterion, and maximum vibration amplitude limit. The first step is shape optimization, in which the best structural configuration is found by getting rid of structural members that have no contributions to the design objectives from the given initial design configuration. The second and third steps are sizing optimization. The second design step gives a set of good design solutions having higher fitness for lightweight and minimum static compliance. Finally the best solution, which has minimum dynamic compliance and weight, is extracted from the good solution set. The proposed design optimization method was successfully applied to the structural design optimization of a grinding machine. After optimization, both static and dynamic compliances are reduced more than 58.4% compared with the initial design, which was designed empirically by experienced engineers. Moreover the weight of the optimized structure are also slightly reduced than before.

AURIX TC 275에서 멀티코어를 이용한 Electronic Stability Control의 수행시간 최적화 (Processing Time Optimization of an Electronic Stability Control system design Using Multi-Cores for AURIX TC 275)

  • 장홍순;조영환;정구민
    • 한국정보전자통신기술학회논문지
    • /
    • 제14권5호
    • /
    • pp.385-393
    • /
    • 2021
  • 본 논문에서는 차량 멀티코어 프로세서를 통한 ESC(Electronic Stability Control) 시스템을 위한 멀티코어 기반 제어기를 제시한다. 차량용 멀티코어 프로세서와 ESC 시스템의 아키텍처를 고려할 때 ESC 소프트웨어의 전체 수행 시간은 멀티코어에 최적화되어 있다. 일반적으로 차량용 멀티코어 시스템에서는 코어 간 동기화, 멀티코어에 대한 테스크 할당, 코어 종속 변수에 대한 메모리 할당을 고려해야 한다. 본 논문에 사용된 ESC 시스템은 초기화, SlipRatio 계산, YawRate 계산, ABS, 통신으로 구성된다. 제안된 설계 방법을 기반으로 싱글코어 프로세서는 멀티코어 프로세서로 확장된다. ESC 시스템은 기능 모듈 할당, 세마포어, 인터럽트, 코어 별 변수 할당과 같은 멀티코어 최적화 방법을 사용하여 멀티코어 제어기로 재설계된다. 실험 결과로 멀티코어 프로세서의 수행 시간이 싱글코어 프로세서에 비해 59.7% 단축되었다.

특성함수를 이용한 Butterfly Valve의 최적설계 (A Optimization of Butterfly Valve using the Characteristic Function)

  • 박영철;최종섭;강진
    • 한국해양공학회지
    • /
    • 제19권3호
    • /
    • pp.59-65
    • /
    • 2005
  • In today's industry, the butterfly valve has been used to control a flow effectively. However, it is difficult to have the existing structural optimization using field analysis from CFD to structure analysis when the structure is influenced by fluid. Therefore, an initial model of this study is to evaluate the stability of the valve using FEM and CFD. And, it selected variable using initial analysis results. Also, it accomplished the shape optimization design using the orthogonal arrangement and characteristic function. Research result, a few experiments showed the optimal results of there dimensional structures to be multi-objective.

반응면기법을 이용한 침전조의 형상최적설계 (Shape Optimization of Sedimentation Tank Using Response Surface Method)

  • 김홍민;최승만;김광용
    • 한국유체기계학회 논문집
    • /
    • 제7권6호
    • /
    • pp.55-61
    • /
    • 2004
  • A numerical procedure for optimizing the shape of three-dimensional sedimentation tank is presented to maximize its sedimentation efficiency. The response surface based optimization is used as an optimization technique with Reynolds-averaged Navier-Stokes analysis for multi-phase flow. Standard $k-{\epsilon}$ model is used as a turbulence closure. Three design variables such as, tank height to center feed wall diameter ratio, blockage ratio of center feed wall and angle of distributor are chosen as design variables. Sedimentation efficiency is defined as an objective function. Full-factorial method is used to determine the training points as a means of design of experiment. Sensitivity of each design variable on the objective function has been evaluated. And, optimal values of the design variables have been obtained.

Optimizing Design Variables for High Efficiency Induction Motor Considering Cost Effect by Using Genetic Algorithm

  • Han, Pil-Wan;Seo, Un-Jae;Choi, Jae-Hak;Chun, Yon-Do;Koo, Dae-Hyun;Lee, Ju
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권6호
    • /
    • pp.948-953
    • /
    • 2012
  • The characteristics of an induction motor vary with the number of parameters and the performance relationship between the parameters also is implicit. In case of the induction motor design, we generally should estimate many objective physical quantities in the optimization procedure. In this article, the multi objective design optimization based on genetic algorithm is applied for the three phase induction motor. The efficiency, starting torque, and material cost are selected for the objectives. The validity of the design results is also clarified by comparison between calculated results and measured ones.

지대지 유도탄 체계 개념설계를 위한 다목적 최적화 프레임워크 (A Multi-Objective Optimization Framework for Conceptual Design of a Surface-to-Surface Missile System)

  • 이종성;안재명
    • 한국항공우주학회지
    • /
    • 제47권6호
    • /
    • pp.460-467
    • /
    • 2019
  • 본 논문은 지대지 유도탄 체계의 개념 설계를 위한 다목적 최적화(MOO) 프레임워크를 제안한다. 제안된 프레임워크를 통해 연구 개발 과정의 초기 단계에 체계 수준에서 trade-off를 수행하기 위한 파레토 프론트를 도출 할 수 있다. 제안된 프레임워크는 모델의 추가 및 변경이 용이하도록 네 가지 기능 모듈(환경 설정 모듈, 변수 설정 모듈, 다분야 분석 모듈 및 최적화 모듈)로 구성되었으며, 이를 활용한 개념 설계 프로세스를 통해 개발 초기 단계에 다양한 설계안에 대한 검토를 수행하는 목적을 달성할 수 있었다. 프레임 워크의 효과를 보여주는 사례 연구를 제시하여 체계 설계에 적용 가능성을 확인하였고, 초기 개념 설계 단계에서 신뢰도와 계산시간 감소를 확보할 수 있는 설계 환경을 제시하는데 기여할 수 있었다.

핀-휜형 방열판의 설계 최적화 (Design Optimization of a Pin-Fin Type Heat Sink)

  • 김형렬;박경우
    • 설비공학논문집
    • /
    • 제15권10호
    • /
    • pp.860-869
    • /
    • 2003
  • Design optimization of the heat sink with 7${\times}$7 square pin-fins is performed numerically using the Computational Fluid Dynamics (CFD) and the Computer Aided Optimization (CAO). In the pin-fins heat sink, the optimum design variables for fin height (h), fin width (w), and fan-to-heat sink distance (c) can be achieved when the thermal resistance ($\theta$$_{j}$) at the junction and the overall pressure drop ($\Delta$p) are minimized simultaneously. To complete the optimization, the finite volume method for calculating the objective functions, the BFGS method for solving the unconstrained non-linear optimization problem, and the weighting method for predicting the multi-objective problem are used. The results show that the optimum design variable for the weighting coefficient of 0.5 are as follows: w=4.653 mm, h=59.215 mm, and c=2.667 mm. In this case, the objective functions are predicted as 0.56K/W of thermal resistance and 6.91 Pa of pressure drop. The Pareto optimal solutions are also presented.re also presented.d.