• Title/Summary/Keyword: Multi-temporal Images

Search Result 214, Processing Time 0.025 seconds

Surface Feature Detection Using Multi-temporal SAR Interferometric Data

  • Liao, Jingjuan;Guo, Huadong;Shao, Yun
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1346-1348
    • /
    • 2003
  • In this paper, the interferometric coherence was estimated and the amplitude intensity was extracted using the repeat-pass interferometric data, acquired by European Remote Sensing Satellite 1 and 2. Then discrimination and classification of surface land types in Zhangjiakou test site, Hebei Province were carried out based on the coherence estimation and the intensity extraction. Seven types of land were discriminated and classified, including in two different types of meadows, woodland, dry land, grassland, steppe and water body. The backscatter and coherence characteristics of these land types on the multi-temporal images were analyzed, and the change of surface features with time series was also discussed.

  • PDF

DETECTION OF LANDSLIDE AREAS USING UNSUPERVISED CHANGE DETECTION WITH HIGH-RESOLUTION REMOTE SENSING IMAGES

  • Park No-Wook;Chi Kwang-Hoon
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.233-235
    • /
    • 2005
  • This paper presents an unsupervised change detection methodology designed for the detection of landslide areas. The proposed methodology consists of two analytical steps: one for multi-temporal segmentation and the other for automatic selection of thresholding values. By considering the conditions of landslide occurrences and the spectral behavior of multi-temporal remote sensing images, some specific procedures are included in the analytical steps mentioned above. The effectiveness and applicability of the methodology proposed here were illustrated by a case study of the Gangneung area, Korea. The case study demonstrated that the proposed methodology could detect about $83\%$ of landslide occurrences.

  • PDF

Local-Based Iterative Histogram Matching for Relative Radiometric Normalization

  • Seo, Dae Kyo;Eo, Yang Dam
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.5
    • /
    • pp.323-330
    • /
    • 2019
  • Radiometric normalization with multi-temporal satellite images is essential for time series analysis and change detection. Generally, relative radiometric normalization, which is an image-based method, is performed, and histogram matching is a representative method for normalizing the non-linear properties. However, since it utilizes global statistical information only, local information is not considered at all. Thus, this paper proposes a histogram matching method considering local information. The proposed method divides histograms based on density, mean, and standard deviation of image intensities, and performs histogram matching locally on the sub-histogram. The matched histogram is then further partitioned and this process is performed again, iteratively, controlled with the wasserstein distance. Finally, the proposed method is compared to global histogram matching. The experimental results show that the proposed method is visually and quantitatively superior to the conventional method, which indicates the applicability of the proposed method to the radiometric normalization of multi-temporal images with non-linear properties.

A Performance Analysis of the SIFT Matching on Simulated Geospatial Image Differences (공간 영상 처리를 위한 SIFT 매칭 기법의 성능 분석)

  • Oh, Jae-Hong;Lee, Hyo-Seong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.5
    • /
    • pp.449-457
    • /
    • 2011
  • As automated image processing techniques have been required in multi-temporal/multi-sensor geospatial image applications, use of automated but highly invariant image matching technique has been a critical ingredient. Note that there is high possibility of geometric and spectral differences between multi-temporal/multi-sensor geospatial images due to differences in sensor, acquisition geometry, season, and weather, etc. Among many image matching techniques, the SIFT (Scale Invariant Feature Transform) is a popular method since it has been recognized to be very robust to diverse imaging conditions. Therefore, the SIFT has high potential for the geospatial image processing. This paper presents a performance test results of the SIFT on geospatial imagery by simulating various image differences such as shear, scale, rotation, intensity, noise, and spectral differences. Since a geospatial image application often requires a number of good matching points over the images, the number of matching points was analyzed with its matching positional accuracy. The test results show that the SIFT is highly invariant but could not overcome significant image differences. In addition, it guarantees no outlier-free matching such that it is highly recommended to use outlier removal techniques such as RANSAC (RANdom SAmple Consensus).

RNCC-based Fine Co-registration of Multi-temporal RapidEye Satellite Imagery (RNCC 기반 다시기 RapidEye 위성영상의 정밀 상호좌표등록)

  • Han, Youkyung;Oh, Jae Hong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.6
    • /
    • pp.581-588
    • /
    • 2018
  • The aim of this study is to propose a fine co-registration approach for multi-temporal satellite images acquired from RapidEye, which has an advantage of availability for time-series analysis. To this end, we generate multitemporal ortho-rectified images using RPCs (Rational Polynomial Coefficients) provided with RapidEye images and then perform fine co-registration between the ortho-rectified images. A DEM (Digital Elevation Model) extracted from the digital map was used to generate the ortho-rectified images, and the RNCC (Registration Noise Cross Correlation) was applied to conduct the fine co-registration. Experiments were carried out using 4 RapidEye 1B images obtained from May 2015 to November 2016 over the Yeonggwang area. All 5 bands (blue, green, red, red edge, and near-infrared) that RapidEye provided were used to carry out the fine co-registration to show their possibility of being applicable for the co-registration. Experimental results showed that all the bands of RapidEye images could be co-registered with each other and the geometric alignment between images was qualitatively/quantitatively improved. Especially, it was confirmed that stable registration results were obtained by using the red and red edge bands, irrespective of the seasonal differences in the image acquisition.

Use of Unmanned Aerial Vehicle for Multi-temporal Monitoring of Soybean Vegetation Fraction

  • Yun, Hee Sup;Park, Soo Hyun;Kim, Hak-Jin;Lee, Wonsuk Daniel;Lee, Kyung Do;Hong, Suk Young;Jung, Gun Ho
    • Journal of Biosystems Engineering
    • /
    • v.41 no.2
    • /
    • pp.126-137
    • /
    • 2016
  • Purpose: The overall objective of this study was to evaluate the vegetation fraction of soybeans, grown under different cropping conditions using an unmanned aerial vehicle (UAV) equipped with a red, green, and blue (RGB) camera. Methods: Test plots were prepared based on different cropping treatments, i.e., soybean single-cropping, with and without herbicide application and soybean and barley-cover cropping, with and without herbicide application. The UAV flights were manually controlled using a remote flight controller on the ground, with 2.4 GHz radio frequency communication. For image pre-processing, the acquired images were pre-treated and georeferenced using a fisheye distortion removal function, and ground control points were collected using Google Maps. Tarpaulin panels of different colors were used to calibrate the multi-temporal images by converting the RGB digital number values into the RGB reflectance spectrum, utilizing a linear regression method. Excess Green (ExG) vegetation indices for each of the test plots were compared with the M-statistic method in order to quantitatively evaluate the greenness of soybean fields under different cropping systems. Results: The reflectance calibration methods used in the study showed high coefficients of determination, ranging from 0.8 to 0.9, indicating the feasibility of a linear regression fitting method for monitoring multi-temporal RGB images of soybean fields. As expected, the ExG vegetation indices changed according to different soybean growth stages, showing clear differences among the test plots with different cropping treatments in the early season of < 60 days after sowing (DAS). With the M-statistic method, the test plots under different treatments could be discriminated in the early seasons of <41 DAS, showing a value of M > 1. Conclusion: Therefore, multi-temporal images obtained with an UAV and a RGB camera could be applied for quantifying overall vegetation fractions and crop growth status, and this information could contribute to determine proper treatments for the vegetation fraction.

Mapping of Drought Index Using Satellite Imagery (위성영상을 활용한 가뭄지수 지도제작)

  • Chang, Eun-Mi;Park, Eun-Ju
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.12 no.4 s.31
    • /
    • pp.3-12
    • /
    • 2004
  • It is necessary to manage water resources in rural areas in order to achieve proper development of new water resources, sustainable usage and reasonable distribution. This paper aims to analyze multi-temporal Landsat-7 ETM+data for soil moisture that is essential for crops in Ahnsung area. The ETM data was also fused with KOMPSAT-1 images in order to be used as backdrop watershed maps at first. Multi-temporal Images showed also the characteristics of soil moisture distribution. Images taken in April showed that rice paddy had as low reflectance as artificial features. Compared with April scenes, those taken in Hay and June showed wetness index increased in the rice paddies. The mountainous areas have almost constant moisture index, so the difference between the dates was very low while reservoirs and livers had dramatic changes. We can calculate total potential areas of distribution of moisture content within the basin and estimate the areas being sensitive to drought. Finally we can point out the sites of small rice paddies lack of water and visualize their distribution within the same basin. It can be said that multi-temporal Landsat-7 ETM+ and KOMPSAT data can be used to show broad drought with quick and simple analysis. Drought sensitiveness maps may enable the decision makers on rural water to evaluate the risk of drought and to measure mitigation, accompanied with proper data on the hydrological and climatic drought.

  • PDF

Hydrosphere Change Detection of the Basin using Multi-temporal Landsat Satellite Imagery (다시기 Landsat영상을 이용한 유역의 수계 변화 탐지)

  • Kang, Joon-Mook;Park, Joon-Kyu;Um, Dae-Yong;Lee, Yong-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.10 no.3
    • /
    • pp.31-39
    • /
    • 2007
  • In this study, the hydrosphere change of the Daecheong dam basin was detected qualitatively and quantitatively using Landsat satellite images until recentness since the construction of Daecheong dam. The hydrosphere change of the basin was analyzed by applying supervised classification about Landsat satellite images which were classified according to the hydrosphere, vegetation, road and etc. for four distinct years which are 1981, 1987, 1993, and 2002 year. Landsat satellite images of each year were achieved overlay analysis with extracting only the hydrosphere, and though these results, the hydrosphere change of the Daecheong dam basin was monitored efficiently.

  • PDF

Ghost-free High Dynamic Range Imaging Based on Brightness Bitmap and Hue-angle Constancy (밝기 비트맵과 색도 일관성을 이용한 무 잔상 High Dynamic Range 영상 생성)

  • Yuan, Xi;Ha, Ho-Gun;Lee, Cheol-Hee;Ha, Yeong-Ho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.1
    • /
    • pp.111-120
    • /
    • 2015
  • HDR(High dynamic range) imaging is a technique to represent a dynamic range of real world. Exposure fusion is a method to obtain a pseudo-HDR image and it directly fuses multi-exposure images instead of generating the true-HDR image. However, it results ghost artifacts while fusing the multi-exposure images with moving objects. To solve this drawback, temporal consistency assessment is proposed to remove moving objects. Firstly, multi-level threshold bitmap and brightness bitmap are proposed. In addition, hue-angle constancy map between multi-exposure images is proposed for compensating a bitmap. Then, two bitmaps are combined as a temporal weight map. Spatial domain image quality assessment is used to generate a spatial weight map. Finally, two weight maps are applied at each multi-exposure image and combined to get the pseudo-HDR image. In experiments, the proposed method reduces ghost artifacts more than previous methods. The quantitative ghost-free evaluation of the proposed method is also less than others.

Updating Land Cover Classification Using Integration of Multi-Spectral and Temporal Remotely Sensed Data (다중분광 및 다중시기 영상자료 통합을 통한 토지피복분류 갱신)

  • Jang, Dong-Ho;Chung, Chang-Jo F.
    • Journal of the Korean Geographical Society
    • /
    • v.39 no.5 s.104
    • /
    • pp.786-803
    • /
    • 2004
  • These days, interests on land cover classification using not only multi-sensor data but also thematic GIS information, are increasing. Often, although we have useful GIS information for the classification, the traditional classification method like maximum likelihood estimation technique (MLE) does not allow us to use the information due to the fact that the MLE and the existing computer programs cannot handle GIS data properly. We proposed a new method for updating the image classification using multi-spectral and multi-temporal images. In this study, we have simultaneously extended the MLE to accommodate both multi-spectral images data and land cover data for land cover classification. In addition to the extended MLE method, we also have extended the empirical likelihood ratio estimation technique (LRE), which is one of non-parametric techniques, to handle simultaneously both multi-spectral images data and land cover data. The proposed procedures were evaluated using land cover map based on Landsat ETM+ images in the Anmyeon-do area in South Korea. As a result, the proposed methods showed considerable improvements in classification accuracy when compared with other single-spectral data. Improved classification images showed that the overall accuracy indicated an improvement in classification accuracy of $6.2\%$ when using MLE, and $9.2\%$ for the LRE, respectively. The case study also showed that the proposed methods enable the extraction of the area with land cover change. In conclusion, land cover classification produced through the combination of various GIS spatial data and multi-spectral images will be useful to involve complementary data to make more accurate decisions.