• Title/Summary/Keyword: Multi-stage spiral inlet

Search Result 3, Processing Time 0.02 seconds

An experimental investigation of flow characteristics in the tangential and the multi-stage spiral inlets (접선식 및 다단식 나선 유입구 흐름 특성의 실험적 연구)

  • Seong, Hoje;Rhee, Dong Sop;Park, Inhwan
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.3
    • /
    • pp.227-234
    • /
    • 2019
  • The vulnerability of urban disasters is increased with the rapid urbanization and industrialization, and the extreme rainfall event is increased due to the global climate change. Urban inundation is also increased due to the extreme rainfall event beyond the capacity limit of facility for the damage prevention. The underground detention vault and the underground drain tunnel are rapidly being utilized to prevent urban inundation. Therefore, the hydraulic review and design analysis of the inlet of the underground facility are important. In this study, the water level of the approach flow according to the inflow discharge is measured and the flow characteristic of the inlet (tangential and spiral) is analyzed. For the spiral inlet, the multi-stage is introduced at the bottom of the inlet to improve the inducing vortex flow at low discharge conditions. In case of the tangential inlet, the discharging efficiency is decreased rapidly with hydraulic jump in the high flow discharge. The rising ratio of the water level in the multi-stage spiral inlet is higher than the tangential inlet, but the stable discharging efficiency is maintained at low and high discharge conditions. And the empirical formula of water level-flow discharge is derived in order to utilize inlets used in this study.

Experimental study of the air emission effect in the tangential and the multi-stage spiral inlet (접선식 유입구와 다단식 나선 유입구의 공기 배출 효과에 관한 실험적 연구)

  • Seong, Hoje;Rhee, Dong Sop;Park, Inhwan
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.4
    • /
    • pp.235-243
    • /
    • 2019
  • Recently, urban inundation was frequently occurred due to the intensive rainfall exceeding marginal capacity of the flood control facility. Furthermore, needs for the underground storage facilities to mitigate urban flood are increasing according to rapidly accelerating urbanization. Thus, in this study, drainage efficiency in drain tunnel connecting to underground storage was investigated from the air-core measurements in the drop shaft against two types of inlet structure. In case of the spiral inlet, the multi-stage structure is introduced at the bottom of the inlet to improve the vortex induction effect at low inflow discharge (multi-stage spiral inlet). The average cross-sectional area of the air-core in the multi-stage spiral inlet is 10% larger than the tangential inlet, and show the highly air emission effect and the highly inflow efficiency at the high inflow discharge. In case of the tangential inlets, the air emission effect decreased after exceeding the maximum inflow discharge, which is required to maintain the inherent performance of the tangential inlet. From the measurements, the empirical formula for the cross-sectional area of the air-core according to locations inside the drop shaft was proposed in order to provide the experimental data available for the inlet model used in experiments.

Study of Hydraulic Characteristics with the Shape of the Intake of an Underground Inflow Facility using Hydraulic Experiments (수리실험을 이용한 지하유입시설 유입구 형상에 따른 수리학적 특성 분석)

  • Seong, Ho Je;Park, In Hwan;Rhee, Dong Sop
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.4
    • /
    • pp.119-126
    • /
    • 2018
  • In recent years, as flood damage caused by heavy rains increased, the great-depth tunnel using urban underground space is emerging as a countermeasure of urban inundation. The great-depth tunnel is used to reduce urban inundation by using the underground space. The drainage efficiency of great-depth tunnel depends on the intake design, which leads to increase discharge into the underground space. The spiral intake and the tangential intake are commonly used for the inlet facility. The spiral intake creates a vortex flow along the drop shaft and reduces an energy of the flow by the wall friction. In the tangential intake, flow simply falls down into the drop shaft, and the design is simple to construct compared to the spiral intake. In the case of the spiral intake, the water level at the drop shaft entrance is risen due to the chocking induced by the flowrate increase. The drainage efficiency of the tangential intake decreases because the flow is not sufficiently accelerated under low flow conditions. Therefore, to compensate disadvantages of the previously suggested intake design, the multi-stage intake was developed which can stably withdraw water even under a low flow rate below the design flow rate. The hydraulic characteristics in the multi-stage intake were analyzed by changing the flow rate to compare the drainage performance according to the intake design. From the measurements, the drainage efficiency was improved in both the low and high flow rate conditions when the multi-stage inlet was employed.