• Title/Summary/Keyword: Multi-sensor network

Search Result 558, Processing Time 0.037 seconds

The Improved Efficiency Network Life-time in TEEN

  • Lee, WooSuk;Lee, Seong Ro;Lee, Jong-Yong
    • International journal of advanced smart convergence
    • /
    • v.5 no.1
    • /
    • pp.59-65
    • /
    • 2016
  • In this paper, we're compared network protocol which is network lifetime longer when using LEACH Protocol, SEP, and TEEN in a heterogeneous Wireless Sensor Network with a Large Sensor Area. Also, we propose a method of divided layer the wide-area sensor filed and transmitting a multi-hop to improve the network lifetime. And we're compared network protocol which is network lifetime more improved apply the proposed method to LEACH Protocol, SEP, and TEEN. We tried to compare results, TEEN showed the best network lifetime. Apply the proposed method to divided the sensor field, L-TEEN (Layered TEEN)'s network lifetime rates of improvement is highest.

BRAIN: A bivariate data-driven approach to damage detection in multi-scale wireless sensor networks

  • Kijewski-Correa, T.;Su, S.
    • Smart Structures and Systems
    • /
    • v.5 no.4
    • /
    • pp.415-426
    • /
    • 2009
  • This study focuses on the concept of multi-scale wireless sensor networks for damage detection in civil infrastructure systems by first over viewing the general network philosophy and attributes in the areas of data acquisition, data reduction, assessment and decision making. The data acquisition aspect includes a scalable wireless sensor network acquiring acceleration and strain data, triggered using a Restricted Input Network Activation scheme (RINAS) that extends network lifetime and reduces the size of the requisite undamaged reference pool. Major emphasis is given in this study to data reduction and assessment aspects that enable a decentralized approach operating within the hardware and power constraints of wireless sensor networks to avoid issues associated with packet loss, synchronization and latency. After over viewing various models for data reduction, the concept of a data-driven Bivariate Regressive Adaptive INdex (BRAIN) for damage detection is presented. Subsequent examples using experimental and simulated data verify two major hypotheses related to the BRAIN concept: (i) data-driven damage metrics are more robust and reliable than their counterparts and (ii) the use of heterogeneous sensing enhances overall detection capability of such data-driven damage metrics.

Development of Energy Efficiency Routing Technique for Mobile Ad-hoc Sensor Network (모바일 에드-혹 센서 네트워크를 위한 에너지 효율적 라우팅 기법 개발)

  • Lee, YangMin;Lee, KwangYong;Lee, JaeKee
    • Annual Conference of KIPS
    • /
    • 2009.11a
    • /
    • pp.547-548
    • /
    • 2009
  • The development of USN(Ubiquitous Sensor Network) technology is creating numerous application areas. Although a network configuration with fixed sensors was the norm in the past, the coexistence of mobile and fixed sensor nodes is a new trend. Fixed sensor networks focused on the energy efficiency of nodes, but the latest studies consider guaranteeing the mobility of nodes and maintaining their connectivity, while remaining energy efficient at the same time. This paper proposes a routing protocol for a mobile ad-hoc sensor network that improves the mobility, connectivity and energy efficiency of nodes while allowing for the management and maintenance of a large number of nodes even in a complex communication environment where mobile and fixed nodes coexist. An algorithm for multi-hop multi-paths, a technique for topology reconfiguration by node movement prediction and vibration sensors, path setting for a large number of nodes, and efficient data transfer technology have been introduced to implement the modified LEAHC-AOMDV protocol. Furthermore, the excellence of this protocol was verified through a comparative experiment with the conventional LEACH protocol.

MEDU-Net+: a novel improved U-Net based on multi-scale encoder-decoder for medical image segmentation

  • Zhenzhen Yang;Xue Sun;Yongpeng, Yang;Xinyi Wu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.7
    • /
    • pp.1706-1725
    • /
    • 2024
  • The unique U-shaped structure of U-Net network makes it achieve good performance in image segmentation. This network is a lightweight network with a small number of parameters for small image segmentation datasets. However, when the medical image to be segmented contains a lot of detailed information, the segmentation results cannot fully meet the actual requirements. In order to achieve higher accuracy of medical image segmentation, a novel improved U-Net network architecture called multi-scale encoder-decoder U-Net+ (MEDU-Net+) is proposed in this paper. We design the GoogLeNet for achieving more information at the encoder of the proposed MEDU-Net+, and present the multi-scale feature extraction for fusing semantic information of different scales in the encoder and decoder. Meanwhile, we also introduce the layer-by-layer skip connection to connect the information of each layer, so that there is no need to encode the last layer and return the information. The proposed MEDU-Net+ divides the unknown depth network into each part of deconvolution layer to replace the direct connection of the encoder and decoder in U-Net. In addition, a new combined loss function is proposed to extract more edge information by combining the advantages of the generalized dice and the focal loss functions. Finally, we validate our proposed MEDU-Net+ MEDU-Net+ and other classic medical image segmentation networks on three medical image datasets. The experimental results show that our proposed MEDU-Net+ has prominent superior performance compared with other medical image segmentation networks.

Impact of Sink Node Location in Sensor Networks: Performance Evaluation (센서 네트워크에서 싱크 노드 위치가 성능에 미치는 영향 분석)

  • Choi, Dongmin;Kim, Seongyeol;Chung, Ilyong
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.8
    • /
    • pp.977-987
    • /
    • 2014
  • Many of the recent performance evaluation of clustering schemes in wireless sensor networks considered one sink node operation and fixed sink node location without mentioning about any network application requirements. However, application environments have variable requirements about their networks. In addition, network performance is sufficiently influenced by different sink node location scenarios in multi-hop based network. We also know that sink location can influence to the sensor network performance evaluation because of changed multipath of sensor nodes and changed overload spots in multipath based wireless sensor network environment. Thus, the performance evaluation results are hard to trust because sensor network is easily changed their network connection through their routing algorithms. Therefore, we suggest that these schemes need to evaluate with different sink node location scenarios to show fair evaluation result. Under the results of that, network performance evaluation results are acknowledged by researchers. In this paper, we measured several clustering scheme's performance variations in accordance with various types of sink node location scenarios. As a result, in the case of the clustering scheme that did not consider various types of sink location scenarios, fair evaluation cannot be expected.

A Low-Power Clustering Algorithm Based on Fixed Radio Wave Radius in WSN (WSN에서 전파범위 기반의 저 전력 클러스터링 알고리즘)

  • Rhee, Chung Sei
    • Convergence Security Journal
    • /
    • v.15 no.3_1
    • /
    • pp.75-82
    • /
    • 2015
  • Recently, lot of researches on multi-level protocol have been done to balance the sensor node energy consumption of WSN and to improve the node efficiency to extend the life of the entire network. Especially in multi-hop protocol, a variety of models have been studied to improve energy efficiency and apply it in real system. In multi-hop protocol, we assume that energy consumption can be adjusted based on the distance between the sensor nodes. However, according to the physical property of the actual WSN, it's hard to establish this. In this paper, we propose low-power sub-cluster protocol to improve the energy efficiency based on the spread of distance. Compared with the previous protocols, the proposed protocol is energy efficient and can be effectively used in the wireless sensing network.

Power based Routing Scheme for wireless sensor networks (무선 센서네트워크에서의 전력기반 라우팅기법)

  • Ernest, Mugisha;Lee, Geun-Soo;Kim, Namho;Yu, Yun-Seop;Park, Hyung-Kun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.657-658
    • /
    • 2015
  • In an wireless sensor network, energy efficient routing protocol is important for multi-hop transmission because senor nodes are powered by battery. In multi-hop transmission, specifice nodes are used and the battery power becomes low, it induce the asymetric remaining power among the nodes and makes the network lifetime reduced. In this paper, we propose a power-aware routing protocol which determines the routing path considering the remaining power of the nodes. Simulation results shows that the proposed routing scheme minimize the transmission delay and increase the network lifetime.

  • PDF

An Energy Efficient Cluster-Based Local Multi-hop Routing Protocol for Wireless Sensor Networks (무선 센서 네트워크를 위한 에너지 효율적인 클러스터 기반 지역 멀티홉 라우팅 프로토콜)

  • Kim, Kyung-Tae;Youn, Hee-Yong
    • The KIPS Transactions:PartC
    • /
    • v.16C no.4
    • /
    • pp.495-504
    • /
    • 2009
  • Wireless sensor networks (WSN) consisting of a largenumber of sensors aims to gather data in a variety of environments and is beingused and applied in many different fields. The sensor nodes composing a sensornetwork operate on battery of limited power and as a result, high energyefficiency and long network lifetime are major goals of research in the WSN. Inthis paper we propose a novel cluster-based local multi-hop routing protocolthat enhances the overall energy efficiency and guarantees reliability in thesystem. The proposed protocol minimizes energy consumption for datatransmission among sensor nodes by forming a multi-hop in the cluster.Moreover, through local cluster head rotation scheme, it efficiently manageswaste of energy caused by frequent formation of clusters which was an issue inthe existing methods. Simulation results show that our scheme enhances energyefficiency and ensure longer network time in the sensor network as comparedwith existing schemes such as LEACH, LEACH-C and PEACH.

Restricted Multi-path Flooding for Efficient Data Transmission in Wireless Sensor Networks (무선 센서 네트워크 상에서 효율적인 데이터 전송을 위한 제한된 다중경로 플러딩)

  • Cho Hyun-Tae;Baek Yun-Ju
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.3
    • /
    • pp.534-539
    • /
    • 2005
  • The key in wireless sensor networks, which consist of a number of sensor nodes, is an energy efficiency. Many routing protocols have been proposed for prolonging network lifetime and reducing traffic in wireless sensor networks. Wireless sensor networks usually use wireless ad-hoc network protocols for routing, but these protocols are not well-suited for wireless sensor networks due to many reasons. In this paper, RM-flooding protocol is proposed for reducing routing overhead occurred when packet flooding. The nodes using this routing protocol can consume the limited energy effectively, and exchange information with remote nodes usulg information receiving from multipath. So, RM-flooding prolongs the network's lifetime.

An Energy Efficient Routing Scheme with Tabu Search Algorithm (타부 탐색 알고리즘을 적용한 전력 효율적 라우팅 기법)

  • Yan, Shi;Hong, Won-Kee
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.10 no.3
    • /
    • pp.86-91
    • /
    • 2011
  • Wireless sensor network (WSN) is a distributed self-organizing network which contains a large number of tiny multi-functional sensor nodes. The network life time is an important issue in WSN because every sensor node has a constraint on electric supply. In this paper, an energy consumption model is described and a GA-based algorithm will be used to optimize the energy consumption by analyzing the working model of sensor nodes. The model will provide an effective reference of working pattern for WSN. This algorithm is evaluated through analysis and simulations.

  • PDF