• Title/Summary/Keyword: Multi-scale Information

Search Result 649, Processing Time 0.022 seconds

Data Update on Multi-Scale Databases (다중축척 공간 데이터베이스의 데이터 갱신)

  • Kwon O-Je;Kang Hae-Kyong;Li Ki-Joune
    • Spatial Information Research
    • /
    • v.12 no.3
    • /
    • pp.239-249
    • /
    • 2004
  • This paper discusses on the update problem of multi-scale databases when the multi-scale databases, which is several spatial databases covering the same geographic area with different scales, are derived from an original one. Although the integrity between original and derived multi-scale databases should be maintained, most of update mechanisms do not 6respect it since the update mechanisms have assumed that the update of source objects propagates to objects directly derived from the source. In order to maintain the integrity of multi-scale databases during updates, we must propagate updates of sources to objects derived from both the updated source objects and other related objects. It is an important functional requirement of multi-scale database systems, which has not been supported by existing spatial database systems. In this paper, we propose a set of rules and algorithms for the update propagation and show a prototype developed on ArcGIS of ESRI. Our update mechanism provides with not only the consistency between multi-scale databases but also incremental updates.

  • PDF

Multi-parametric MRIs based assessment of Hepatocellular Carcinoma Differentiation with Multi-scale ResNet

  • Jia, Xibin;Xiao, Yujie;Yang, Dawei;Yang, Zhenghan;Lu, Chen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.10
    • /
    • pp.5179-5196
    • /
    • 2019
  • To explore an effective non-invasion medical imaging diagnostics approach for hepatocellular carcinoma (HCC), we propose a method based on adopting the multiple technologies with the multi-parametric data fusion, transfer learning, and multi-scale deep feature extraction. Firstly, to make full use of complementary and enhancing the contribution of different modalities viz. multi-parametric MRI images in the lesion diagnosis, we propose a data-level fusion strategy. Secondly, based on the fusion data as the input, the multi-scale residual neural network with SPP (Spatial Pyramid Pooling) is utilized for the discriminative feature representation learning. Thirdly, to mitigate the impact of the lack of training samples, we do the pre-training of the proposed multi-scale residual neural network model on the natural image dataset and the fine-tuning with the chosen multi-parametric MRI images as complementary data. The comparative experiment results on the dataset from the clinical cases show that our proposed approach by employing the multiple strategies achieves the highest accuracy of 0.847±0.023 in the classification problem on the HCC differentiation. In the problem of discriminating the HCC lesion from the non-tumor area, we achieve a good performance with accuracy, sensitivity, specificity and AUC (area under the ROC curve) being 0.981±0.002, 0.981±0.002, 0.991±0.007 and 0.999±0.0008, respectively.

An Efficient Monocular Depth Prediction Network Using Coordinate Attention and Feature Fusion

  • Huihui, Xu;Fei ,Li
    • Journal of Information Processing Systems
    • /
    • v.18 no.6
    • /
    • pp.794-802
    • /
    • 2022
  • The recovery of reasonable depth information from different scenes is a popular topic in the field of computer vision. For generating depth maps with better details, we present an efficacious monocular depth prediction framework with coordinate attention and feature fusion. Specifically, the proposed framework contains attention, multi-scale and feature fusion modules. The attention module improves features based on coordinate attention to enhance the predicted effect, whereas the multi-scale module integrates useful low- and high-level contextual features with higher resolution. Moreover, we developed a feature fusion module to combine the heterogeneous features to generate high-quality depth outputs. We also designed a hybrid loss function that measures prediction errors from the perspective of depth and scale-invariant gradients, which contribute to preserving rich details. We conducted the experiments on public RGBD datasets, and the evaluation results show that the proposed scheme can considerably enhance the accuracy of depth prediction, achieving 0.051 for log10 and 0.992 for δ<1.253 on the NYUv2 dataset.

Multi-scale crack detection using decomposition and composition (해체와 구성을 이용한 다중 스케일 균열 검출)

  • Kim, Young Ro;Chung, Ji Yung
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.9 no.3
    • /
    • pp.13-20
    • /
    • 2013
  • In this paper, we propose a multi-scale crack detection method. This method uses decomposition, composition, and shape properties. It is based on morphology algorithm, crack features. We use a morphology operator which extracts patterns of crack. It segments cracks and background using opening and closing operations. Morphology based segmentation is better than existing integration methods using subtraction in detecting a crack it has small width. However, morphology methods using only one structure element could detect only fixed width crack. Thus, we use decomposition and composition methods. We use a decimation method for decomposition. After decomposition and morphology operation, we get edge images given by binary values. Our method calculates values of properties such as the number of pixels and the maximum length of the segmented region. We decide whether the segmented region belongs to cracks according to those data. Experimental results show that our proposed multi-scale crack detection method has better results than those of existing detection methods.

Low Resolution Rate Face Recognition Based on Multi-scale CNN

  • Wang, Ji-Yuan;Lee, Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.12
    • /
    • pp.1467-1472
    • /
    • 2018
  • For the problem that the face image of surveillance video cannot be accurately identified due to the low resolution, this paper proposes a low resolution face recognition solution based on convolutional neural network model. Convolutional Neural Networks (CNN) model for multi-scale input The CNN model for multi-scale input is an improvement over the existing "two-step method" in which low-resolution images are up-sampled using a simple bi-cubic interpolation method. Then, the up sampled image and the high-resolution image are mixed as a model training sample. The CNN model learns the common feature space of the high- and low-resolution images, and then measures the feature similarity through the cosine distance. Finally, the recognition result is given. The experiments on the CMU PIE and Extended Yale B datasets show that the accuracy of the model is better than other comparison methods. Compared with the CMDA_BGE algorithm with the highest recognition rate, the accuracy rate is 2.5%~9.9%.

Road Damage Detection and Classification based on Multi-level Feature Pyramids

  • Yin, Junru;Qu, Jiantao;Huang, Wei;Chen, Qiqiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.2
    • /
    • pp.786-799
    • /
    • 2021
  • Road damage detection is important for road maintenance. With the development of deep learning, more and more road damage detection methods have been proposed, such as Fast R-CNN, Faster R-CNN, Mask R-CNN and RetinaNet. However, because shallow and deep layers cannot be extracted at the same time, the existing methods do not perform well in detecting objects with fewer samples. In addition, these methods cannot obtain a highly accurate detecting bounding box. This paper presents a Multi-level Feature Pyramids method based on M2det. Because the feature layer has multi-scale and multi-level architecture, the feature layer containing more information and obvious features can be extracted. Moreover, an attention mechanism is used to improve the accuracy of local boundary boxes in the dataset. Experimental results show that the proposed method is better than the current state-of-the-art methods.

Texture segmentation using Neural Networks and multi-scale Bayesian image segmentation technique (신경회로망과 다중스케일 Bayesian 영상 분할 기법을 이용한 결 분할)

  • Kim Tae-Hyung;Eom Il-Kyu;Kim Yoo-Shin
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.4 s.304
    • /
    • pp.39-48
    • /
    • 2005
  • This paper proposes novel texture segmentation method using Bayesian estimation method and neural networks. We use multi-scale wavelet coefficients and the context information of neighboring wavelets coefficients as the input of networks. The output of neural networks is modeled as a posterior probability. The context information is obtained by HMT(Hidden Markov Tree) model. This proposed segmentation method shows better performance than ML(Maximum Likelihood) segmentation using HMT model. And post-processed texture segmentation results as using multi-scale Bayesian image segmentation technique called HMTseg in each segmentation by HMT and the proposed method also show that the proposed method is superior to the method using HMT.

No-reference Image Blur Assessment Based on Multi-scale Spatial Local Features

  • Sun, Chenchen;Cui, Ziguan;Gan, Zongliang;Liu, Feng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.10
    • /
    • pp.4060-4079
    • /
    • 2020
  • Blur is an important type of image distortion. How to evaluate the quality of blurred image accurately and efficiently is a research hotspot in the field of image processing in recent years. Inspired by the multi-scale perceptual characteristics of the human visual system (HVS), this paper presents a no-reference image blur/sharpness assessment method based on multi-scale local features in the spatial domain. First, considering various content has different sensitivity to blur distortion, the image is divided into smooth, edge, and texture regions in blocks. Then, the Gaussian scale space of the image is constructed, and the categorized contrast features between the original image and the Gaussian scale space images are calculated to express the blur degree of different image contents. To simulate the impact of viewing distance on blur distortion, the distribution characteristics of local maximum gradient of multi-resolution images were also calculated in the spatial domain. Finally, the image blur assessment model is obtained by fusing all features and learning the mapping from features to quality scores by support vector regression (SVR). Performance of the proposed method is evaluated on four synthetically blurred databases and one real blurred database. The experimental results demonstrate that our method can produce quality scores more consistent with subjective evaluations than other methods, especially for real burred images.

Contrast Enhancement Algorithm for Backlight Images using by Linear MSR (선형 MSR을 이용한 역광 영상의 명암비 향상 알고리즘)

  • Kim, Beom-Yong;Hwang, Bo-Hyun;Choi, Myung-Ryul
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.62 no.2
    • /
    • pp.90-94
    • /
    • 2013
  • In this paper, we propose a new algorithm to improve the contrast ratio, to preserve information of bright regions and to maintain the color of backlight image that appears with a great relative contrast. Backlight images of the natural environment have characteristics for difference of local brightness; the overall image contrast improvement is not easy. To improve the contrast of the backlight images, MSR (Multi-Scale Retinex) algorithm using the existing multi-scale Gaussian filter is applied. However, existing multi-scale Gaussian filter involves color distortion and information loss of bright regions due to excessive contrast enhancement and noise because of the brightness improvement of dark regions. Moreover, it also increases computational complexity due to the use of multi-scale Gaussian filter. In order to solve these problems, a linear MSR is performed that reduces the amount of computation from the HSV color space preventing the color distortion and information loss due to excessive contrast enhancement. It can also remove the noise of the dark regions which is occurred due to the improved contrast through edge preserving filter. Through experimental evaluation of the average color difference comparison of CIELAB color space and the visual assessment, we have confirmed excellent performance of the proposed algorithm compared to conventional MSR algorithm.

A New Connected Coherence Tree Algorithm For Image Segmentation

  • Zhou, Jingbo;Gao, Shangbing;Jin, Zhong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.4
    • /
    • pp.1188-1202
    • /
    • 2012
  • In this paper, we propose a new multi-scale connected coherence tree algorithm (MCCTA) by improving the connected coherence tree algorithm (CCTA). In contrast to many multi-scale image processing algorithms, MCCTA works on multiple scales space of an image and can adaptively change the parameters to capture the coarse and fine level details. Furthermore, we design a Multi-scale Connected Coherence Tree algorithm plus Spectral graph partitioning (MCCTSGP) by combining MCCTA and Spectral graph partitioning in to a new framework. Specifically, the graph nodes are the regions produced by CCTA and the image pixels, and the weights are the affinities between nodes. Then we run a spectral graph partitioning algorithm to partition on the graph which can consider the information both from pixels and regions to improve the quality of segments for providing image segmentation. The experimental results on Berkeley image database demonstrate the accuracy of our algorithm as compared to existing popular methods.