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Abstract 
 

Blur is an important type of image distortion. How to evaluate the quality of blurred image 
accurately and efficiently is a research hotspot in the field of image processing in recent years. 
Inspired by the multi-scale perceptual characteristics of the human visual system (HVS), this 
paper presents a no-reference image blur/sharpness assessment method based on multi-scale 
local features in the spatial domain. First, considering various content has different sensitivity 
to blur distortion, the image is divided into smooth, edge, and texture regions in blocks. Then, 
the Gaussian scale space of the image is constructed, and the categorized contrast features 
between the original image and the Gaussian scale space images are calculated to express the 
blur degree of different image contents. To simulate the impact of viewing distance on blur 
distortion, the distribution characteristics of local maximum gradient of multi-resolution 
images were also calculated in the spatial domain. Finally, the image blur assessment model is 
obtained by fusing all features and learning the mapping from features to quality scores by 
support vector regression (SVR). Performance of the proposed method is evaluated on four 
synthetically blurred databases and one real blurred database. The experimental results 
demonstrate that our method can produce quality scores more consistent with subjective 
evaluations than other methods, especially for real burred images.  
 
 
Keywords: Image blur assessment, Gaussian scale space, generalized Gaussian distribution, 
singular value decomposition, gradient 
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1. Introduction 

In the process of image acquisition, compression, transmission and so on, distortion will be 
inevitably introduced, resulting in degradation of visual quality. Image quality has a direct 
impact on human visual perception and information acquisition, leading to the importance of 
image quality assessment (IQA) in the field of image processing and analysis [1]. IQA 
methods are divided into subjective and objective evaluations. Subjective methods obtain 
image quality by human observation and scoring, which can produce accurate and reliable 
results. However, subjective methods are complicated and time-consuming, the evaluation 
results will be interfered by external environment, resulting in limited application scenarios. 
Therefore, objective evaluation has received great attention in recent years. According to the 
availability of reference images, objective evaluation can be categorized into full-reference 
(FR), reduced-reference (RR), and no-reference (NR) methods [2]. Since it is difficult to 
acquire all or part information of the reference images in many practical environments, NR 
IQA methods are with greatest practical value and have gained increasingly attention in recent 
years. Blur is an important type of image distortion, which is usually caused by defocusing, 
target motion, camera jitter, compression, etc., so the evaluation of image blur/sharpness is 
very critical. In this paper, we focus on blur distortion and study NR or blind image 
blur/sharpness quality assessment method. 

In recent years, great progress has been made in the research of no-reference image blur 
assessment methods based on human visual system (HVS). These methods can be divided into 
two types according to whether the extracted features are to be trained to generate quality 
score. In the first type of methods, a relatively small number of spatial or frequency domain 
features related to blur degree are extracted and used directly as quality scores after simple 
additive or multiplicative fusion. In contrast, a large number of spatial and frequency domain 
features are extracted in the second type of methods, and machine learning is employed to train 
the mapping form image features to quality score. 

Considering that blur will change the structure of image, several methods have been 
proposed by extracting the edge, gradient, local contrast and other features representing the 
spatial structure, and obtained high accuracy. In edge-based methods, Marziliano et al. first 
used Sobel operator to detect the edge in an image, and calculated the distance from the 
beginning to the end pixel of the edge as the edge width [3]. Quality score is defined as the 
average width of all local edges. This method achieved good evaluation results for different 
blurred versions of a single image, but did not perform well with images with diverse content. 
To address this problem, Ferzli et al. integrated the just noticeable blur (JNB) into the 
probability summation model, and proposed an image blur metric [4] (JNBM) based on just 
noticeable blur. The edge blocks of the image are first selected, then the local contrast and 
edge width of the blocks are calculated. Finally, a probabilistic summation model is applied to 
simulate the perceived blur of the local image blocks to generate the quality score. Narvekar et 
al. improved JNBM in 2011, their implementation estimated the blur detection probability of 
each edge in the image, and calculated the cumulative blur detection probability (CPBD) [5] to 
predict blur quality. 

As an effective descriptor of image structure, gradient is commonly used for image blur 
evaluation. Li et al. argued that blur affects the moment size of image, their implementation [6] 
used Chebyshev moment as an effective shape descriptor to measure image blur. Gradient of 
the image is first calculated to characterize shape, and then the Chebyshev moment of gradient 
map is calculated in blocks. Finally, non-DC moment energy normalized by variance is 
applied for blind image blur evaluation (BIBLE). Later, Li et al. proposed a sparse 
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representation based no-reference image sharpness assessment method (SPARISH) [7]. First, 
natural images are used to train a complete visual dictionary, image blocks are represented as 
the sparse coefficient of an over-complete dictionary. Considering that blur will reduce 
high-frequency details, the block energy is calculated by sparse coefficient, and the image 
sharpness is represented by the variance normalization energy of a group of high-frequency 
blocks. Zhan et al. argued that gradient not only reflects structure, but also directly represents 
blur of the image. They verified through experiments that HVS tend to judge sharpness of the 
image by maximum gradient, and used the variability of gradients to represent variations of 
image content [8]. Sharpness score is calculated as the weighted product of the maximum 
gradient and the variability of gradients (MGVG). Since only gradient is considered, this 
method has low computational complexity, and shows pleasurable evaluation effect on 
synthetic blurred images. 

Bahrami et al. [9] found that the maximum local variation (MLV) is subject to image 
content and blurring, which is similar with the Gaussian distribution in regions with small 
varying texture while similar with the Laplace distribution in regions with strong edges and 
flat content. The sharpness of the image is measured by the standard deviation of the weighted 
MLV distribution. Gu et al. argued that blur will increase the similarity of local autoregressive 
(AR) model parameters and proposed an AR model based image sharpness metric (ARISM) 
[10]. A 8-order AR model was first established by training each pixel with its 8 neighborhoods. 
Then the energy and contrast differences of AR parameters were calculated. Finally, a 
percentage fusion strategy was utilized to predict the overall sharpness score. Hosseini et al. 
designed an HVS-related filter (HVS-MaxPol) to extract blur-sensitive features [11], the 
high-order center moment after image filtering was calculated as the sharpness score. This 
method utilizes HVS characteristics more effectively and achieves high accuracy on both 
synthetically and real blurred image databases. 

Considering that the blur will reduce the high frequency component of image in the 
frequency domain, some scholars also evaluate the blur of image by frequency domain 
characteristics. Based on the fact that blur would destroy the LPC structure of the image, 
Hassen et al. proposed a local phase correlation (LPC) based no-reference image sharpness 
index (LPC-SI) in the complex wavelet transform domain [12], The blur of the image is 
estimated by the intensity of the LPC. Gvozden et al. observed the impact of blur on local 
contrast of images, and proposed a blind image sharpness evaluation algorithm based on local 
contrast statistics (BISHARP) [13]. Local root mean square is first calculated to generate a 
contrast map, the generated contrast map is then converted to the wavelet domain. Sharpness 
score of the image is estimated by the sorted high frequency wavelet coefficients. Kerouh et al. 
transformed the edge image into the frequency domain with DCT transformation [14], 
modeled the histogram of DCT coefficient with exponential probability density function 
(PDF), and the sharpness of image is measured by steepness of PDF. Evaluation methods in 
the frequency domain can obtain promising accuracy, but due to transformation from spatial 
domain to frequency domain, they usually require high computational complexity. 

The first type of methods directly calculate the quality score with image features without 
training, and their evaluation results do not depend on the training set. They usually have 
simple computational processes, and the contributions of extracted features to blur are obvious. 
They perform well on synthetically blurred images, but not suitable for evaluation of real 
blurred images, which is mainly because the extracted features are not enough to describe 
characteristics of real blurred images. In contract, the second type of learning-based methods 
extract multiple features in spatial or frequency domain, and generate the quality scores 
through learning algorithms such as support vector regression (SVR). Moorthy et al. modeled 
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the frequency domain coefficient distribution of images after pyramid wavelet transform [15], 
and extracted a total of 88 statistical features for no-reference distortion type identification and 
quality evaluation (DIIVINE). Mittal et al. modeled the distribution of spatial local 
normalized luminance, and extracted 18 distribution features for blind image spatial quality 
evaluation (BRISQUE) [16]. Li et al. proposed a general NR image quality assessment metric 
using a GRadient-Induced Dictionary (GRID) [17], image features are extracted using the 
dictionary based on Euclidean-norm coding and max-pooling. After feature extraction, both 
[15, 16, 17] used SVR to learn the mapping from feature space to quality score. They are 
general distortion-oriented evaluation methods, but also perform well in the evaluation of blur 
distortion. Aiming at blur evaluation, Yue et al. calculated the image spatial local binary 
model (LBP) [18], and the histogram of LBP was used as feature for SVR learning quality 
score. Li et al. proposed a no-reference and robust image sharpness evaluation method (RISE) 
by learning both spatial and DCT domain features [19]. Considering the multi-scale 
perception characteristics of HVS, RISE extracted 11 spatial and frequency features, and used 
SVR to learn the quality score. The evaluation effect of RISE is quite well, especially on real 
blurred databases. 

With great progress of neural network (NN) technology, some scholars try to apply neural 
network to general IQA [20, 21, 22, 23]. However, few work directly apply NN for blur 
evaluation, and NN for IQA usually have small number of layers, which is mainly because 
databases for IQA are usually small, sample images are not enough to train deep NN. 
Therefore, NN-based IQA methods, especially methods for blur evaluation still need further 
research. At present, it is more suitable to evaluate blur quality with machine learning methods 
by extracting carefully-designed features. 

To sum up, no-reference image blur evaluation methods can obtain better performance by 
learning effective features to build quality model. However, most of the previous 
learning-based blur evaluation methods are based on the overall statistical features of the 
image and are suitable for describing the characteristics of uniform blurred images, resulting 
in considerable evaluation effect of synthetically blurred databases. They ignored that the 
sensitivity of blur differs between different image contents, while blur of image in real scene is 
mostly non-uniform. If the impact of different local contents on blur can be distinguished 
during feature extraction, the evaluation performance is expected to be further improved. 
Therefore, inspired by [19], we proposed a no-reference image blur assessment method based 
on multi-scale spatial local features. Taking into account the sensitivity of different content 
areas in the image to blur by applying a local feature extraction and image block clustering 
strategy, which enriches the multi-scale image similarity of original and gaussian scale images. 
Moreover, we observe that not only the change in blurring between the original and the 
Gaussian scale images, but also the change between images in the each scale can effectively 
evaluate the blur of image. We innovatively define the energy ratio between Gaussian scale 
images, which not only utilizes the multi-scale characteristics of HVS, but also extends the 
feature analysis to inter-scale. 

Three major contributions of this paper are listed as follows. 
1) The proposed method separately considers the sensitivity of different regions in the 

image to blur, and combines the multi-scale characteristics of the HVS to extract the contrast 
features between the original and the Gaussian scale image by three regions.  

2) By analyzing changes in blur between images in each scale, this method add the contrast 
between Gaussian scale images as effective features to evaluate blur, that is, image energy 
ratio of each image. 
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3) Taking the viewing distance of human eyes into consideration, the original image is 
down-sampled, and the distribution parameters of the local maximum gradient map at multiple 
resolutions of the image are calculated to estimate the overall blur statistically.  

The rest of this paper are organized as follows. In Section 2, the block diagram of proposed 
method is introduced along with the implementation steps in detail. In Section 3, description of 
the databases and the results and analysis of the performance evaluation are illustrated. Finally, 
the paper is concluded in Section 4. 

2. Image Blur Assessment Based on Multi-scale Spatial Local Features 

2.1 Analysis of Image Characteristics in Gaussian Scale Space 
HVS’s perception of image quality has multi-scale characteristics. Lindeberg's work [24] 
showed that representation of the original image in the Gaussian scale space can be obtained 
through the multi-scale transformation based on Gaussian convolution, which is often used to 
extract the essential features of the image. For an image ( , )I x y , it’s scale space images 

( , , )L x y σ  can be obtained by convolution with a Gaussian convolution function ( , , )G x y σ  
with variable scale: 
 ( , , ) ( , ) ( , , )L x y I x y G x yσ σ= ∗  (1) 
Where ( , )x y  denote the coordinate of the pixel, σ  is the scale parameter of the Gaussian 
convolution function, and ∗  denotes convolution operation. The two-dimensional Gaussian 
convolution function ( , , )G x y σ  is defined as: 
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In Gaussian scale space, the spatial size and resolution of the image remain unchanged, 
while detail information of the original image is gradually suppressed with the increase of 
scale. Scale space simulates the imaging process of scene on retina with different distances. 
Fig. 1 shows two original images with different blur scores and their scale space versions. 
Sizes of the Gaussian filter are 3×3, 9×9, 15×15 and 21×21, and corresponding standard 
deviations are 2, 4, 6 and 8 respectively. Five scale space images are constructed, represented 
as scale 0-4, where scale 0 is the original image. As shown in Fig. 1, scale space images are 
blurred versions of the original image, and their extents of blur are determined by the size of 
the Gaussian kernel. Furthermore, the constructed scale space images for the original images 
with different blur quality exhibit different characteristics. The original "butterfly" image in 
the first row has a high visual quality. With the increase of Gaussian kernel parameters, 
Gaussian scale space images are obviously blurred compared with the original image. While 
the second row shows Gaussian scale space images of "airplane" image with low quality score, 
which are very similar with the original image, indicate that the sharpness of the image can be 
measured by the overall similarity between the original and Gaussian scale space images [19]. 

Through further observation on Fig. 1, it can be found that the original image “butterfly” in 
Fig. 1 (a) has a large amount of blurred backgrounds, but it is still considered to be of 
high-quality. This is because different image contents have different sensitivity or masking 
effect to blur distortion, and the blur distortion in the image is usually non-uniform. And the 
judgment of HVS on the quality of blur image is also not uniformly distributed in spatial, but 
more through the sharpest parts in the image. In addition, the regions with different blur 
degrees in Fig. 1 (b)-(e) show different characteristics after multiple Gaussian smoothing. Fig. 
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2 shows the image blocks containing smooth, edge and texture information taken from the 
original image in Fig. 1 and the corresponding scale space image blocks convolved by 
Gaussian kernels. As can be seen from Fig. 2, the original and multiple Gaussian convolution 
image blocks containing smooth information are very similar, and almost no change can be 
seen. The blur degree of edge image blocks increases gradually after Gaussian convolution, 
and the difference between them is most obvious. Texture image blocks vary greatly when the 
Gaussian convolution intensity is large and the impact of the Gaussian convolution on them is 
between smooth blocks and edge blocks. Inspired by this, this work divides the original image 
into three regions: smooth, edge and texture, and then the classified similarity between the 
original and the corresponding Gaussian scale space image blocks is calculated as the feature 
of blur degree to evaluate image quality. Our method can better describe the situation that the 
local content of the image is affected by blur compared with the whole image similarity 
measurement in scale space [19], and the experimental results also confirm that our method is 
significantly improved over [19]. 

     

     
(a)                         (b)                             (c)                          (d)                           (e) 

Fig. 1. Two original images and their Gaussian scale space images. Original image "butterfly" in the 
first row, DMOS=21.4194, original image "airplane" in the second row, DMOS=43.2646 

 

 
(a)                                                            (b) 

Fig. 2. Smooth, edge, and texture blocks of two original images, and the corresponding Gaussian scale 
image blocks. (a) Blocks of the image "butterfly", (b) blocks of the image "airplane". Smooth blocks in 

the first row, edge blocks in the second row and texture blocks in the third row 

2.2 Proposed Block Diagram 
The block diagram of proposed model is shown in Fig. 3. According to the sensitivity of 
different content of the image to blur, image is first classified into three categories in blocks: 
smooth, edge and texture. Then contrast features between the original and Gaussian scale 
space images, along with features between images in each scale, are calculated based on 
classification results. In addition, the local maximum gradient distribution characteristics on 
multi-resolution are extracted to simulate the effect of viewing distance on blur. Finally, all 
features are combined and SVR is employed to learn the quality score.  
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Fig. 3. Block diagram of the proposed method 

2.3 Local Feature Extraction and Image Block Classification 
For a blurred image, we first convert it into gray scale. Then the image is divided into 
non-overlapping blocks with size of n n× . Sobel edge operator is applied to extract edge 
pixels, and the threshold of edge detection is adjusted to 4 by experiments. The gradient G of 
the image block is calculated as: 
 2 2= bh bvG G G+  (3) 

 
1   0   1  1   2   1
2   0   2 * ,   0   0   0 *
1   0   1 -1  -2 1

bh bvG I G I
   
   = =   
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-
-
- -

 (4) 

where bhG and bvG  are the horizontal and vertical gradient map of image block.  
In order to divide the image into smooth, edge and texture regions, we extract 4 local features 

of each image block in gray scale. Regions of the image with clear edges or complex textures 
contain more information and higher energy, while regions with blur or smooth information are 
the opposite. Therefore, the gradient energy ( bhE , bvE ) in horizontal and vertical directions of 
the image block are firstly calculated as local features, which are defined as: 

 2 2

1 1 1 1
( , ) , ( , )  

n n n n

bh bh bv bv
x y x y

E G x y E G x y
= = = =

= =∑∑ ∑∑  (5) 

where ( , )x y  is the pixel coordinate. In addition, scan each n n×  block, the number of edge 
pixels bM  of the block is calculated. Moreover, the standard deviation bσ  of image block is 
also extracted to evaluate the change of content in gray scale. 

Finally, 4-dimensional local features of each image block are fused, which are represented 
as { , , , }b bh bv b bx E E M σ= . Feature set of the overall image are 1 2( , ,..., )Bx x x , where B denotes 
the number of image blocks. K-means clustering algorithm is employed to classify image 
blocks. Fig. 4 shows the results of four images after feature clustering. As shown in Fig. 4, 
clustering algorithm performs well in differentiating the smooth, edge and texture regions of 
the image. The blurry background, wings and tiny flowers on the left of Fig. 4 (a) are classified 
as smooth, edge and textured regions, respectively. While the sky, plane outline and text, and 
ground of Fig. 4 (b) are classified as smooth, edge and texture regions respectively. The clouds 
in Fig. 4 (c) are classified as texture regions. Classification results are consistent with the 
judgment of human eyes, which verify the effectiveness of our image block classification 
strategy. 
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(a)                                  (b)                                (c)                                   (d) 

Fig. 4. Classification results of images, smooth blocks are depicted in grey, edge blocks in orange and 
the texture blocks in blue, block size is 8×8 

2.4 Local Contrast Features between Original and Gaussian Scale Space 
Images 
Gradient and singular value features have been commonly used in IQA, which are effective 
features to describe structure and sharpness of the image. In this paper, contrast features 
between the original and the corresponding Gaussian scale space image blocks are calculated 
in the block layer to express the sensitivity of different image contents to blur distortion. 

The gradient G of the original block and the corresponding Gaussian scale blocks are first 
calculated by Sobel operator, gradient similarity of the original and the corresponding 
Gaussian scale space image blocks is defined as: 

 0 1
2 2

1 1 0 1

2 ( , ) ( , )1( )
( , ) ( , ) +

n n
q

q
x y q

G x y G x y T
GS k

n n G x y G x y T= =

+
=

× +∑∑  (6) 

where k is the block index, {1,2,3,4}q∈ represents the scale of the image, 1T  is a constant to 
keep the ratio stable, and the value of 1T  is -710 . According to the classification results in 
Section 2.3, the average gradient similarity for each class between the original and 
corresponding Gaussian scale space image blocks are calculated as: 
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q q p
p

GS GS k k R
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 1 ( ),  e
q q e

e

GS GS k k R
N
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 1 ( ),  t
q q t

t

GS GS k k R
N
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where pR , eR  and tR  are the set of smooth, edge and texture blocks respectively, and pN , 

eN  and tN  are the number of smooth, edge and texture blocks. 
Average singular value similarity between the original and the corresponding Gaussian 

scale space image block are then extracted to estimate the change of structure. Image block bI  
is decomposed into =U VT

bI Σ , U and V are orthogonal matrices, which are called the left and 
the right singular matrix of I. Σ is a diagonal matrix, and iσ  on the diagonal are called the 
singular value. The singular value vector of bI  is 1 2( , ,..., )rs σ σ σ= , where r denotes the rank 
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of the matrix bI . Singular value similarity between the original block and the corresponding 
Gaussian scale space blocks is defined as: 

 0 2
2 2
0 2

2
( ) q

q
q

s s T
SS k

s s T
+

=
+ +

 (10) 

where {1,2,3,4}q∈  represents the scale of the image. The constant 2T  prevents the result 

from being unstable as the denominator approaches 0, and the value of 2T  is -710 . According 
to the classification results of image blocks, the average singular value similarity for each class 
between the original and corresponding Gaussian scale space image blocks are calculated as: 
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In this section, the classified average gradient and singular value similarity between original 
and the Gaussian scale space image blocks are calculated to measure the blur of different 
content in the original image. A total of 24 local average features are extracted, which are
{ , , , ,S , }p e t p e t

q q q q q qGS GS GS SS S SS , {1,2,3,4}q∈ . 
 

2.5 Energy Ratio Features of the Images between Scales  
Besides the similarity between original image and corresponding Gaussian scale images, we 
also extracted the similarity between images in each scale. As shown in Fig. 1, scale space 
images are not only burred versions of the original image, but also of other lower-scale 
images. The blur of image blocks does not increase uniformly with the increase of gaussian 
kernel. To simulate the change of Gaussian kernel between scale space images, we defined the 
contrast feature between different Gaussian scales, that is energy ratio of each scale image and 
their higher-scale versions. 

Energy represents the information of image. It has demonstrated that blur is mainly 
expressed as the speared of edges and the decrease of energy in high-frequency areas. With the 
increase of Gaussian convolution scale, edges and details of the image are gradually blurred, 
resulting in the gradually attenuation of information and energy. Inspired by this, we proposed 
to evaluate the change of blur on scale images by the energy, which is defined as the sum of 
squares of the gradient: 

 2

1 1
( , )

n n

b
x y

E G x y
= =

=∑∑  (14) 

Considering that HVS tends to judge the sharpness of image by the sharpest region, while 
blur mainly affects the edges and texture areas of the image, with limited impact on smooth 
areas. We first calculate the energy of each block in the image, then sort these blocks in 
descending order according to the energy to take out the top p% high energy block, and 
calculate the average energy of these blocks reflecting sharp regions: 
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where %Z B p= ×    is the number of top p% high energy blocks of the image, B represents 

the total number of blocks in the image, and     means the downward rounding. 
In this section, the energy ratio qR  between the scale q image and the image after scale q is 

calculated, which is defined as the ratio of the difference and sum between the average energy 
of the top p% high-energy blocks of scale q and the average energy of this part of images after 
scale q: 
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where q=0,1,2,3. The constant 3T  avoids the result being unstable when the denominator 
approaches 0, and the value of 3T  is -710 .The larger qR  is, the greater the energy change of 
the high energy blocks of the image at scale q by Gaussian convolution, indicating that the 
details of the image of scale q are more affected by the convolution, and the image of sale is 
sharper. Fig. 5 depicts the process of energy ratio calculating between Gaussian scales. For 
each scale image, the energy ratio is calculated with all higher-scale images, not only the 
impact of Gaussian blur on the original image, but also impact of blur on each scale space 
images are considered. 
 

Orginal

R0

R2

R1

R3

Scale1 Scale2 Scale3 Scale4

 
Fig. 5. Energy ratio between scales 

 
Fig. 6 shows the energy ratio of scale space images (b), (c), (d) and (e)and corresponding 

higher scale images of “butterfly” and “airplane”. The energy ratios of the "butterfly" image 
are much higher than that of "airplane", showed that the "butterfly" image is sharper than 
"airplane". And as scale q increases, the trend of energy ratio decreasing accordance with the 
trend of image quality degradation, which indicate that the energy ratio of high energy blocks 
between Gaussian scales are effective features to express the blur of the image. 
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Fig. 6. Energy ratio between Gaussian scale images 

2.6 Distribution Characteristics of Multi-resolution Local Maximum Gradient 
Blurring would smooth details of the image and increase the correlation between adjacent 
pixels, thus changes the statistical relationship between pixels. In this section, the local 
maximum gradient (LMG) of pixels is defined as the maximum gradient of pixels along four 
directions, that are horizontal, vertical, main diagonal and sub-diagonal. Histogram of LMG is 
plotted to analyze the statistical relationship of neighborhood pixels in images with different 
blur quality. Fig. 7 depicts the LMG distribution histograms of image “butterfly” and 
“airplane”. To make it clear, we took the natural log of the probability density as the 
y-coordinate. As shown in Fig. 7, the distribution of LMG in different blur images differs 
obviously. Moreover, the distribution of LMG are similar with the distribution of the 
Maximum Local Variation (MLV) in [9], that is, LMG of the texture region is similar with 
Gaussian distribution, while LMG of the edge and smooth region is similar with the 
hyper-Laplacian distribution. The distribution of LMG can be well described by the 
Generalized Gaussian Distribution (GGD) [25], which has also been used to model the 
distribution of frequency and spatial coefficients in general no-reference IQA [15, 16]. 
Consequently, the GGD with zero mean is applied to fit the distribution of LMG of the image, 
which is defined as: 

 2( ; , ) exp( ( ) )
2 (1 / )

x
f x ααα σ

β α β
= −

Γ
 (17) 

where = (1 / ) / (3 / )β σ α αΓ Γ , ( )Γ ⋅ is the gamma function, 1

0
( ) x tx t e dt

∞ − −Γ = ∫ , α  controls 

the shape of distribution while 2σ  controls the variance. 
In addition, as the viewing distance decreases, the image resolution decreases and the image 

appears sharper. For a reduced resolution image, the actual scene represented by two adjacent 
pixels is further away and the local maximum gradient (LMG) becomes larger. We 
down-sample the original image by 2 and 4 times to construct the multi-resolution 
representation of it. Fig. 7 plots the LMG distribution of the original images “butterfly” and 
“airplane” and the corresponding reduced resolution images. LMG distribution extends in the 
positive direction of the horizontal axis to different degrees, which means the image gradient 
increases. We calculate the GGD distribution parameters (α , 2σ ) of the LMG for each 
resolution image, and extract 6 distribution parameters for each image as a group of features. 
α  and 2σ  are estimated using the method based on moment matching [26]. 
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(a)          (b)                 (c) 

 
(d)           (e)                 (f) 

Fig. 7. LMG distribution of two original images and their down-sampled versions. The first row 
depicts the distribution of “butterfly,” the second row depicts the distribution of “airplane”  

2.7 Model Training and Blur Evaluation 
To sum up, total 34 features are extracted for each image, including 24 multi-scale local 
average similarity features, 4 inter-scale energy ratio features and 6 multi-resolution LMG 
distribution parameter features. Finally, these features are integrated and SVR is employed to 
learn the mapping of features to quality score to obtain the quality prediction model. During 
the test, 34 dimensional features were extracted from the test image and the trained SVR 
model was used to predict the blur quality score of the images. LIBSVM [27] code package 
was used for SVR training and testing, and RBF function was selected as the kernel function. 

3. Experimental Results and Analysis 

3.1 Experiment Settings 
We evaluate the performance of the proposed method on five public IQA databases, including 
four synthetically blurred databases LIVE [28], TID2008 [29], TID2013 [30], CSIQ [31] and 
one real blurred database BID [32]. Images in the synthetically blurred databases are generated 
by Gaussian low-pass filtering of the reference images, their type of blur distortion is single, 
and blur distributed uniformly in these images. While blurred images in the real blurred 
database BID are taken by consumer equipments, which have variable distortion types, 
including defocus, simple motion, complex motion, and mixed blur distortion, which are more 
likely to occur in real scenes. LIVE, TID2008, TID2013, CSIQ and BID databases have 145, 
100, 125, 150, 586 burred images, respectively. Fig. 8 shows several example images from the 
LIVE and BID databases. The first row shows images from LIVE database, in which Gaussian 
blur are introduced artificially, and distributes uniformly in the whole image. By contrast, blur 
types of images from BID database are variable and their shooting scenes are complicated, 
such as intense movement between the camera and the scene in (d), defocusing of the camera 
in (e), slight shaking of the camera and movement of targets in the night scene in (f). As 
observed in Fig. 8, the real blurred images are much more complicated, leading it more 
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difficult to evaluate the quality of them. 
We use three criteria to measure the performance of image blur assessment methods, 

including Spearman rank ordered correlation coefficient (SROCC), Pearson linear correlation 
coefficient (PLCC) and root mean square error (RMSE). SROCC measures the monotonicity 
of prediction while PLCC and RMSE evaluate the accuracy of prediction. Better prediction 
results correspond to larger SROCC and PLCC with a maximum value of 1, and correspond to 
smaller RMSE. Before calculating the three criteria, a 5-parameter logistic function [33] is 
used to perform a non-linear fitting of the objective score: 

 
2 31 4 5( )

1 1( ) ( )
2 1 xq x x

eβ ββ β β−= − + +
+

 (18) 

where 1β , 2β , 3β , 4β  and 5β  are fitting parameters. 
 

       
(a)                                  (b)                                   (c) 

       
(d)                                  (e)                                  (f) 

Fig. 8. Example images from LIVE and BID databases 
 

3.2 Comparison with Image Blur Evaluation Methods 
In this section, we compare the proposed method with nine state-of-the-art no-reference blur 
assessment methods, including JNB [4], CPBD [5], LPC-SI [12], MLV [9], ARISM [10], 
SPARISH [7], RISE [20], BISHARP [13], MGVG [8]. In the experiment, 80% images of each 
database are randomly selected for training and the remaining 20% for testing. To avoid errors 
caused by the selection of training-test sets, the reported experiment results are the median of 
1000 tests. Three performance criteria of different methods on five blur image databases are 
shown in Table 1, where the best two results are marked in boldface. Our method achieves the 
best performance in four of the five databases. PLCC in both LIVE and TID2013 databases are 
higher than 0.97, and SROCC is higher than 0.96, which are obviously better than other 
methods. MGVG obtained the best performance in CSIQ database, whose PLCC reached 
0.9669. However, PLCC of MGVG in BID database is only 0.1870 and SROCC is 0.1793, 
indicating that MGVG is not suitable for evaluating the quality of real blurred images. We 
notice that the evaluation performance of RISE and our method on the BID database is 
obviously better than others, showing that methods of directly using features as quality scores 
cannot evaluate real blurred images effectively. Compared with RISE, our method makes a 
great improvement in real burred images. To be specific, PLCC and SROCC by our method 
reached 0.6337 and 0.6208 respectively, while the result of RISE is only 0.6017 and 0.5839, 
indicating that our method comprehensively extracts the features of the real blurred images 
and thus can evaluate the quality of them better. 
 
 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 10, October 2020                              4073 

In addition, scatter plot is used as an intuitive performance evaluation. Fig. 9 shows scatter 
plots of our method against RISE on five databases, where data points describe the 
correspondence between the subjective and objective scores of the images in the database, and 
the black line are the logarithmic fitting curves of all points. Scatter plots of the evaluation 
results of RISE for five databases are relatively scattered, especially for the high-quality 
images of CSIQ database and the low-quality images of BID database. Compared with RISE, 
scatter plots distributions of our method on five databases are more concentrated on both sides 
of the fitting curve, and the fitting curve is more linear, which indicates that our method has 
better prediction accuracy and monotonicity than RISE. Consequently, our method is superior 
to RISE for both synthetically and real blurred images. 

 
Table 1. Results of performance evaluation on five databases 

Database criteria JNB CPBD LPC-S
I MLV ARIS

M 
SPARI

SH RISE BISH
ARP 

MGV
G 

Propos
ed 

LIVE 

PLCC 0.8160 0.8955 0.9219 0.9590 0.9560 0.9595 0.9620 0.9614 0.9494 0.9758 

SROCC 0.7871 0.9182 0.9501 0.9566 0.9511 0.9593 0.9493 0.9611 0.9448 0.9660 

RMSE 10.667

 

8.2216 6.1092 6.1676 5.4176 5.2026 5.0011 5.9818 5.8850 4.5192 

TID2008 

PLCC 0.6931 0.8316 0.8455 0.8585 0.8544 0.8891 0.9289 0.8911 0.9380 0.9554 

SROCC 0.6667 0.8406 0.8431 0.8548 0.8681 0.8869 0.9218 0.8550 0.9419 0.9459 

RMSE 0.8459 0.6438 0.6267 0.6018 0.6098 0.5372 0.4218 0.5326 0.4067 0.3821 

TID2013 

PLCC 0.7113 0.8552 0.8917 0.8818 0.8979 0.9004 0.9419 0.9089 0.9540 0.9748 

SROCC 0.6902 0.8512 0.8889 0.8789 0.9105 0.8927 0.9338 0.9088 0.9605 0.9662 

RMSE 0.8771 0.6467 0.5647 0.5885 0.5493 0.5430 0.4201 0.5203 0.3740 0.3046 

CSIQ 

PLCC 0.8061 0.8818 0.9061 0.9096 0.9481 0.9380 0.9463 0.9186 0.9669 0.9485 

SROCC 0.7624 0.8852 0.8931 0.9274 0.9314 0.9141 0.9279 0.9125 0.9501 0.9085 

RMSE 0.1696 0.1351 0.1212 0.1069 0.0911 0.0993 0.0926 0.1132 0.0741 0.0928 

BID 

PLCC 0.1732 0.1155 0.3901 0.3463 0.1841 0.2996 0.6017 0.3505 0.1870 0.6337 

SROCC 0.2007 0.0183 0.3161 0.1742 0.3236 0.3073 0.5839 0.2927 0.1793 0.6208 

RMSE 1.2331 1.2436 1.1528 1.2305 1.1659 1.1944 0.9936 1.1725 1.2299 1.0015 
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(a)                                                    (b) 

Fig. 9. Comparison of scatter plots on five databases. (a) Scatter plots of RISE. (b) Scatter plots of our 
method 

 

3.3 Contributions of Components 
Our multi-scale spatial local features-based image blur evaluation method extracts three kinds 
of features to train the quality model, including classified local contrast features between the 
original and the Gaussian scale space images, energy ratio features between Gaussian scales 
and distribution features of LMG with multi-resolution. To illustrate the contributions of 
various features to the quality model, each kind of features and the integrated features are 
trained respectively in this section. Similarly, randomly select 80% images of each database 
for training and the remaining 20% for testing, the train-test process is repeated 1000 times, 
and take the median value as the experimental results. As shown in Table 2, the evaluation 
performance of model trained by integrated features on five databases is better than the models 
trained by single type features. Specifically, the classified local contrast features perform best. 
The PLCC on LIVE, TID2008 and TID2013 reaches 0.9648, 0.9532 and 0.9654 respectively, 
while the evaluation performance of the energy ratio features and LMG distribution features 
are lower than the local contrast features. In addition, the PLCC and SROCC of the models 
trained by single-class features on BID database are all less than 0.6, while the PLCC of the 
model trained by integrated features reached 0.6337 and SROCC reached 0.6208. Real image 
blur is often determined by multiple factors, such as defocusing, relative motion, etc., so it is 
necessary to extract more diversified features to establish reliable quality model. Therefore, 
each kind of features have a good contribution to the quality model, and the best results are 
obtained through the combined training by the integrated features, which indicates the 
complementarity of the three kinds of features in the quality prediction. 
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Table 2. Contributions of components 

Database criteria Local 
contrast Energy ratio Distribution  

of LMG All 

LIVE 
PLCC 0.9648 0.9595 0.9489 0.9758 

SROCC 0.9571 0.9458 0.9276 0.9660 

RMSE 5.3441 5.5947 5.6787 4.5192 

TID2008 
PLCC 0.9532 0.8817 0.8997 0.9554 

SROCC 0.9414 0.8603 0.8857 0.9459 

RMSE 0.3927 0.6076 0.5639 0.3821 

TID2013 
PLCC 0.9654 0.8970 0.9187 0.9748 

SROCC 0.9562 0.8762 0.9011 0.9662 

RMSE 0.3569 0.6023 0.5481 0.3046 

CSIQ 
PLCC 0.9393 0.9416 0.9410 0.9485 

SROCC 0.8933 0.9106 0.9026 0.9085 

RMSE 0.0988 0.0938 0.1006 0.0928 

BID 
PLCC 0.5938 0.4938 0.5639 0.6337 

SROCC 0.5741 0.4646 0.5460 0.6208 

RMSE 1.0393 1.1079 1.0615 1.0015 

3.4 Impact of Parameters 
Evaluation performance of the proposed method is related to the size of image blocks and 
selected top p% high energy blocks. Therefore, block size n and high energy block percentage 
p% are adjusted to compare the performance of the models and look for the best results. Size 
of image blocks affects the classification results of image contents. Smaller block means more 
feature extraction operations and increases computational complexity, while larger block may 
contain both sharp and blur image contents, leading to the inaccuracy of classification result. 
High-energy block percentage p% determines the amount of image blocks used to extract 
energy ratio features. In this section, impact of these two parameters on the blur evaluation 
model is tested on five databases. Similarly, 80% images in each database were selected for 
training and the remaining 20% for testing, and the median of 1000 training tests was taken as 
the experimental results. 

To identify how image block size affects the performance of quality model, we compare 
PLCC and SROCC of quality model at block size n= 4, 8 and 16 in Table 3, as well as the 
results of direct average and weighted average by the number of images. Both direct average 
and weighted average PLCC and SROCC achieve the best results when n=8. Therefore, 
considering the evaluation performance and computational complexity, we chose the block 
size of 8×8. To analyze the impact of p on the quality model, we change the value of p from 10 
to 100 with an interval of 10 and the size of image block is fixed as 8×8. Experiments were 
carried out on five databases and the results of PLCC and SROCC were compared in Fig. 10. 
Experimental results show that the evaluation performance of the quality model is stable under 
different values of p PLCC and SROCC on several databases are relatively larger when p is 40, 
so p is chosen as 40 in our implementation. 
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Table 3. Contributions of components 
Database Criteria LIVE TID2008 TID2013 CSIQ BID Direct 

average 
Weighted 
average 

4 PLCC 0.9758 0.9462 0.9649 0.9273 0.6249 0.8878 0.7793 

SROCC 0.9650 0.9398 0.9531 0.8845 0.6228 0.8730 0.7691 

8 PLCC 0.9758 0.9554 0.9748 0.9485 0.6337 0.8977 0.7889 

SROCC 0.9660 0.9459 0.9662 
 

0.9085 0.6208 0.8779 0.7735 

16 PLCC 0.9740 0.9467 0.9665 0.9313 0.6375 0.8912 0.7866 

SROCC 0.9621 0.9383 0.9573 0.8830 0.6183 0.8718 0.7665 

        
(a)                                                                       (b) 

Fig. 10. Impact of percentage of high energy blocks 

3.5 Impact of Training Proportion 
In this section, we adjust proportion of images for model training and testing to analyze the 
impact of training images on performance of quality model. We randomly select 80%, 70%, 
60%, and 50% of the images in each database for training, and the rest for testing, median of 
1000 tests are reported as results. Table 4 shows the performance of models trained with 
different proportions of images on five databases. Performance of the quality model decreases 
slightly with the decrease of the proportion of training images. However, when only 50% of 
the images are used to train the model, our method still performs well on five databases. In 
particular, PLCC and SROCC tested on LIVE and TID2013 databases are above 0.94, and 
PLCC and SROCC tested on BID database are above 0.56, which are still better than most 
previous methods, indicates that the proposed method still has a considerable prediction effect 
when training the quality model with a small number of samples. 
 

Table 4. Impact of training proportion 
Database Criteria 80% 70% 60% 50% 

LIVE PLCC 0.9758 0.9713 0.9654 0.9579 

SROCC 0.9660 0.9650 0.9619 0.9557 

TID2008 PLCC 0.9554 0.9459 0.9378 0.9279 

SROCC 0.9459 0.9426 0.9381 0.9313 

TID2013 PLCC 0.9784 0.9649 0.9558 0.9439 

SROCC 0.9662 0.9584 0.9517 0.9403 

CSIQ PLCC 0.9485 0.9398 0.9315 0.9248 

SROCC 0.9085 0.9003 0.8938 0.8888 

BID PLCC 0.6337 0.6118 0.5835 0.5782 

SROCC 0.6208 0.5999 0.5722 0.5663 
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4. Conclusion 
In this paper, we proposed a no-reference image blur assessment method based on multi-scale 
spatial local features. Dividing the image into smooth, edge and texture regions based on the 
different sensitivity of the local content to blur distortion, not only the similarity between the 
original image and the Gaussian scale space images is compared, but also the energy variation 
characteristics between the Gaussian scale space images are considered. Moreover, the 
distribution characteristics of local maximum gradient under multi-resolution are calculated to 
simulate the effect of observation distance on image blur quality. The experimental results on 
four synthetically blurred databases and one real blurred database show the higher prediction 
accuracy of our method compared with previous state-of-the-art no-reference image blur 
assessment methods, especially on real blurred database. In addition, the contributions of each 
kind of features and the integrated features to quality model are proved by extensive 
experiments. 
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