• Title/Summary/Keyword: Multi-satellite data

Search Result 556, Processing Time 0.034 seconds

PAPR Reduction Using Hybrid Schemes for Satellite Communication System

  • Kim, Jae-Moung;Zhao, Zibin;Li, Hao-Wei;Sohn, Sung-Hwan
    • Journal of Satellite, Information and Communications
    • /
    • v.3 no.2
    • /
    • pp.48-53
    • /
    • 2008
  • In the future, satellite communication systems, such as ISDB in Japan and DVB in Europe, are required to support higher transmission date rate for providing multimedia services including HDTV, high rate data communication etc. Considering the effectiveness of OFDM technique in efficient usage of frequency bandwidth and its robustness to the multi-path fading, several OFDM based standards have been proposed for satellite communication. However, the problem of high Peak to Average Power Ratio is one of the main obstacles for the implementation of OFDM based system. Many PAPR reduction schemes have been proposed for OFDM systems. Among these, the partial transmit sequences (PTS) is attractive as they obtain better PAPR property by modifying OFDM signals without distortion. In this paper, considering the complexity issue, we present a simplified minimum maximum (minimax) criterion and Sub-Optimal PTS algorithm to optimize the phase factor. This algorithm can be dynamically made tradeoff`f between performance and complexity on demand. In addition, we integrate guided scrambling (GS) with this method. Simulation in multiple antenna based OFDM system proves that the proposed Hybrid schemes can get much more PAPR reduction and do not require transmission of side information (SI). Thus it is helpful when implementing OFDM technique in satellite communication system.

  • PDF

Study on Ship Detection Using SAR Dual-polarization Data: ENVISAT ASAR AP Mode

  • Yang, Chan-Su;Ouchi, Kazuo
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.5
    • /
    • pp.445-452
    • /
    • 2008
  • Preliminary results are reported on ship detection using coherence images computed from cross-correlating images of multi-look-processed dual-polarization data (HH and HV) of ENVISAT ASAR. The traditional techniques of ship detection by radars such as CFAR (Constant False Alarm Rate) rely on the amplitude data, and therefore the detection tends to become difficult when the amplitudes of ships images are at similar level as the mean amplitude of surrounding sea clutter. The proposed method utilizes the property that the multi-look images of ships are correlated with each other. Because the inter-look images of sea surface are covered by uncorrelated speckle, cross-correlation of multi-look images yields the different degrees of coherence between the images and water. In this paper, the polarimetric information of ships, land and intertidal zone are first compared based on the cross-correlation between HH and HV images, In the next step, we examine the technique when the dual-polarization data are split into two multi-look images, It was shown that the inter-look cross-correlation method could be applicable in the performance improvement of small ship detection and the land masking, It was also found that a simple combination of coherence images from each co-polarised (HH) inter-look and cross-polarised (HV) inter-look data can provide much higher target-detection possibilities.

DEM generation from KOMPSAT-1 Electro-Optical Camera Data

  • Kim, Taejung;Lee, Heung-Kyu
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.325-330
    • /
    • 1998
  • The first Korean remote sensing satellite, Korea Multi-Purpose Satellite (KOMPSAT-1), is going to be launched in 1999. This will carry a 7m resolution Electro-Optical Camera (EOC) for earth observation. The primary mission of the KOMPSAT-1 is to acquire stereo imagery over the Korean peninsular for the generation of 1:25,000 cartographic maps. For this mission, research is being carried out to assess the possibilities of automated or semi-automated mapping of EOC data and to develop, if necessary, such enabling tools. This paper discusses the issue of automated DEM generation from EOC data and identifies some important aspects in developing a for DEM generation system from EOC data. This paper also presents the current status of the development work for such a system. The development work has focused on sensor modelling, stereo matching and DEM interpolation techniques. The performance of the system is shown with a SPOT stereo pair. A DEM generated from a commercial software is also presented for comparison. The paper concludes that the proposed system creates preferable results to the commercial software and suggests future developments for successful generation of DEM for EOC data.

  • PDF

Study on GNSS Constellation Combination to Improve the Current and Future Multi-GNSS Navigation Performance

  • Seok, Hyojeong;Yoon, Donghwan;Lim, Cheol Soon;Park, Byungwoon;Seo, Seung-Woo;Park, Jun-Pyo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.4 no.2
    • /
    • pp.43-55
    • /
    • 2015
  • In the case of satellite navigation positioning, the shielding of satellite signals is determined by the environment of the region at which a user is located, and the navigation performance is determined accordingly. The accuracy of user position determination varies depending on the dilution of precision (DOP) which is a measuring index for the geometric characteristics of visible satellites; and if the minimum visible satellites are not secured, position determination is impossible. Currently, the GLObal NAvigation Satellite system (GLONASS) of Russia is used to supplement the navigation performance of the Global Positioning System (GPS) in regions where GPS cannot be used. In addition, the European Satellite Navigation System (Galileo) of the European Union, the Chinese Satellite Navigation System (BeiDou) of China, the Quasi-Zenith Satellite System (QZSS) of Japan, and the Indian Regional Navigation Satellite System (IRNSS) of India are aimed to achieve the full operational capability (FOC) operation of the navigation system. Thus, the number of satellites available for navigation would rapidly increase, particularly in the Asian region; and when integrated navigation is performed, the improvement of navigation performance is expected to be much larger than that in other regions. To secure a stable and prompt position solution, GPS-GLONASS integrated navigation is generally performed at present. However, as available satellite navigation systems have been diversified, finding the minimum satellite constellation combination to obtain the best navigation performance has recently become an issue. For this purpose, it is necessary to examine and predict the navigation performance that could be obtained by the addition of the third satellite navigation system in addition to GPS-GLONASS. In this study, the current status of the integrated navigation performance for various satellite constellation combinations was analyzed based on 2014, and the navigation performance in 2020 was predicted based on the FOC plan of the satellite navigation system for each country. For this prediction, the orbital elements and nominal almanac data of satellite navigation systems that can be observed in the Korean Peninsula were organized, and the minimum elevation angle expecting signal shielding was established based on Matlab and the performance was predicted in terms of DOP. In the case of integrated navigation, a time offset determination algorithm needs to be considered in order to estimate the clock error between navigation systems, and it was analyzed using two kinds of methods: a satellite navigation message based estimation method and a receiver based method where a user directly performs estimation. This simulation is expected to be used as an index for the establishment of the minimum satellite constellation for obtaining the best navigation performance.

Evaluation of Drought Monitoring Using Satellite Precipitation for Un-gaged Basins (미계측지역의 위성강우 기반 가뭄감시 평가)

  • Jang, Sangmin;Yoon, Sunkwon;Lee, Seongkyu;Lee, Taehwa;Park, Kyungwon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.2
    • /
    • pp.55-63
    • /
    • 2018
  • This study analyzed the applications of near real-time drought monitoring using satellite rainfall for the Korean Peninsula and un-gaged basins. We used AWS data of Yongdam-Dam, Hoengseong-Dam in Korea area, the meteorological station of Nakhon Rachasima, Pak chong for test-bed to evaluate the validation and the opportunity for un-gaged basins. In addition, we calculated EDI (Effective doought index) using the stations and co-located PERSIANN-CDR, TRMM (Tropical Rainfall Measurement Mission) TMPA (The TRMM Multisatellite Precipitation Analysis), GPM IMERG (the integrated Multi-satellitE Retrievals for GPM) rainfall data and compared the EDI-based station data with satellite data for applications of drought monitoring. The results showed that the correlation coefficient and the determination coefficient were 0.830 and 0.914 in Yongdam-dam, and 0.689 and 0.835 in Hoengseng-Dam respectively. Also, the correlation coefficient were 0.830, 0.914 from TRMM TMPA datasets and compasion with 0.660, 0.660 based on PERSIANN-CDR and TRMM data in nakhon and pakchong station. Our results were confirmed possibility of near real-time drought monitoring using EDI with daily satellite rainfall for un-gaged basins.

Changes of the Forest Types by Climate Changes using Satellite imagery and Forest Statistical Data: A case in the Chungnam Coastal Ares, Korea (위성영상과 임상통계를 이용한 충남해안지역의 기후변화에 따른 임상 변화)

  • Kim, Chansoo;Park, Ji-Hoon;Jang, Dong-Ho
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.4
    • /
    • pp.523-538
    • /
    • 2011
  • This study analyzes the changes in the surface area of each forest cover, based on temperature data analysis and satellite imagery as the basic methods for the impact assessment of climate change on regional units. Furthermore, future changes in the forest cover are predicted using the double exponential smoothing method. The results of the study have shown an overall increase in annual mean temperature in the studied region since 1990, and an especially increased rate in winter and autumn compared to other seasons. The multi-temporal analysis of the changes in the forest cover using satellite images showed a large decrease of coniferous forests, and a continual increase in deciduous forests and mixed forests. Such changes are attributed to the increase in annual mean temperature of the studied regions. The analysis of changes in the surface area of each forest cover using the statistical data displayed similar tendencies as that of the forest cover categorizing results from the satellite images. Accordingly, rapid changes in forest cover following the increase of temperature in the studied regions could be expected. The results of the study of the forest cover surface using the double exponential smoothing method predict a continual decrease in coniferous forests until 2050. On the contrary, deciduous forests and mixed forests are predicted to show continually increasing tendencies. Deciduous forests have been predicted to increase the most in the future. With these results, the data on forest cover can be usefully applied as the main index for climate change. Further qualitative results are expected to be deduced from these data in the future, compared to the analyses of the relationship between tree species of forest and climate factors.

Multi-task Learning Based Tropical Cyclone Intensity Monitoring and Forecasting through Fusion of Geostationary Satellite Data and Numerical Forecasting Model Output (정지궤도 기상위성 및 수치예보모델 융합을 통한 Multi-task Learning 기반 태풍 강도 실시간 추정 및 예측)

  • Lee, Juhyun;Yoo, Cheolhee;Im, Jungho;Shin, Yeji;Cho, Dongjin
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_3
    • /
    • pp.1037-1051
    • /
    • 2020
  • The accurate monitoring and forecasting of the intensity of tropical cyclones (TCs) are able to effectively reduce the overall costs of disaster management. In this study, we proposed a multi-task learning (MTL) based deep learning model for real-time TC intensity estimation and forecasting with the lead time of 6-12 hours following the event, based on the fusion of geostationary satellite images and numerical forecast model output. A total of 142 TCs which developed in the Northwest Pacific from 2011 to 2016 were used in this study. The Communications system, the Ocean and Meteorological Satellite (COMS) Meteorological Imager (MI) data were used to extract the images of typhoons, and the Climate Forecast System version 2 (CFSv2) provided by the National Center of Environmental Prediction (NCEP) was employed to extract air and ocean forecasting data. This study suggested two schemes with different input variables to the MTL models. Scheme 1 used only satellite-based input data while scheme 2 used both satellite images and numerical forecast modeling. As a result of real-time TC intensity estimation, Both schemes exhibited similar performance. For TC intensity forecasting with the lead time of 6 and 12 hours, scheme 2 improved the performance by 13% and 16%, respectively, in terms of the root mean squared error (RMSE) when compared to scheme 1. Relative root mean squared errors(rRMSE) for most intensity levels were lessthan 30%. The lower mean absolute error (MAE) and RMSE were found for the lower intensity levels of TCs. In the test results of the typhoon HALONG in 2014, scheme 1 tended to overestimate the intensity by about 20 kts at the early development stage. Scheme 2 slightly reduced the error, resulting in an overestimation by about 5 kts. The MTL models reduced the computational cost about 300% when compared to the single-tasking model, which suggested the feasibility of the rapid production of TC intensity forecasts.

Innovative Geostationary Communication and Remote Sensing Mutli-purpose Satellite Program in Korea-COMS Program

  • Baek, Myung-Jin;Park, Jae-Woo
    • Journal of Satellite, Information and Communications
    • /
    • v.2 no.2
    • /
    • pp.29-35
    • /
    • 2007
  • COMS satellite is a multipurpose satellite in the geostationary orbit, which accommodates multiple payloads of the Ka band Satellite Communication Payload, Meteorological Imager, and Geostationary Ocean Color Imager into a single spacecraft platform. In this paper, Korea's first innovative geostationary Communication, Ocean and Meteorological Satellite (COMS) program is introduced which is fully funded by Korean Government. The satellite platform is based on the Astrium EUROSTAR 3000 communication satellite, but creatively combined with MARS Express satellite platform to accommodate three different payloads efficiently for COMS. The goals of the Ka band satellite communication mission are to in-orbit verify the performances of advanced communication technologies and to experiment wide-band multi-media communication service. The Meteorological Imager mission is to continuously extract meteorological products with high resolution and multi-spectral imager, to detect special weather such as storm, flood, yellow sand, and to extract data on long-term change of sea surface temperature and cloud. The Geostationary Ocean Color Imager mission aims at monitoring of marine environments around Korean peninsula, production of fishery information (Chlorophyll, etc.), and monitoring of long-term/short-term change of marine ecosystem. The system design difficulties are in the different kinds of payload mission requirements of communication and remote sensing purposes and how to combine them into one to meet the overall satellite requirements. In this paper, Ka band communication payload system is more highlighted.

  • PDF

Multi-GNSS Kinematic Precise Point Positioning: Some Results in South Korea

  • Choi, Byung-Kyu;Cho, Chang-Hyun;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.6 no.1
    • /
    • pp.35-41
    • /
    • 2017
  • Precise Point Positioning (PPP) method is based on dual-frequency data of Global Navigation Satellite Systems (GNSS). The recent multi-constellations GNSS (multi-GNSS) enable us to bring great opportunities for enhanced precise positioning, navigation, and timing. In the paper, the multi-GNSS PPP with a combination of four systems (GPS, GLONASS, Galileo, and BeiDou) is analyzed to evaluate the improvement on positioning accuracy and convergence time. GNSS observations obtained from DAEJ reference station in South Korea are processed with both the multi-GNSS PPP and the GPS-only PPP. The performance of multi-GNSS PPP is not dramatically improved when compared to that of GPS only PPP. Its performance could be affected by the orbit errors of BeiDou geostationary satellites. However, multi-GNSS PPP can significantly improve the convergence speed of GPS-only PPP in terms of position accuracy.

Design of Multi-Constellation and Multi-Frequency GNSS SDR with Fully Reconfigurable Functionality

  • Song, Young-Jin;Lee, Hak-beom;Won, Jong-Hoon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.2
    • /
    • pp.91-102
    • /
    • 2021
  • In this paper, a fully reconfigurable Software Defined Radio (SDR) for multi-constellation and multi-frequency Global Navigation Satellite System (GNSS) receivers is presented. The reconfigurability with respect to the data structure, variability of signal and receiver parameters, and receiver's internal functionality is presented. The configuration file, that is modified to lead to an entirely different operation of the SDR in response to specific target signal scenarios, directly determines the operating characteristics of the SDR. In this manner, receiver designers can effectively reduce the effort to develop many different combinations of multi-constellation and/or multi-frequency GNSS receivers. Finally, the implementation of the presented fully reconfigurable SDR is included with the experimental processing results such as acquisition, tracking, navigation for the received signals in the realistic fields.