• Title/Summary/Keyword: Multi-resonance Antenna

Search Result 40, Processing Time 0.024 seconds

Macro-Micro Reconfigurable Antenna for Multi Mode & Multi Band(MMMB) Communication Systems (다중 모드 다중 대역(MMMB) 통신 환경을 위한 매크로-마이크로 주파수 재구성 안테나)

  • Yeom, In-Su;Choi, Jung-Han;Jung, Young-Bae;Kim, Dong-Ho;Jung, Chang-Won
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.10
    • /
    • pp.1031-1041
    • /
    • 2009
  • A small microstrip monopole antenna for macro-micro frequency tuning over multiple bands is presented. The meander-shape antenna is fabricated on a conventional printed circuit board(FR-4, $\varepsilon_r=4.4$ and tan $\delta=0.02$). The antenna operates over WiBro(2.3~2.4 GHz) and WLAN a/b(2.4~2.5 GHz/5.15~5.35 GHz) service bands with an essentially constant antenna gain within each service band. Two diodes, a PIN diode and a varactor, are embedded into the antenna for frequency reconfiguration. The PIN diode is used for frequency switching(macro-tuning) between 2 GHz and 5 GHz bands while the varactor is used for frequency tuning(micro-tuning) within the service bands, 2.3~2.5 GHz and 5.15~5.35 GHz. Unwanted resonances between the two frequency bands(2 GHz and 5 GHz) are suppressed by filling up the gaps between the meander lines. The antenna gain is essentially constant and higher than 2 dBi within each service band. The measured performance of the proposed antenna system suggests the macro-micro frequency tuning techniques be useful in reconfigurable wireless communication systems.

Design and Implementation of Monopole Antenna with Parasitic Element of Spiral Shape and L-Resonator (스파이럴 구조 기생 소자와 L자형 공진기를 갖는 모노폴 안테나 설계 및 구현)

  • Yoon, Kwang-Yeol;Lee, Seungwoo;Kim, Jang-Yeol;Rhee, Seung-Yeop;Kim, Nam
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.1
    • /
    • pp.11-19
    • /
    • 2013
  • In this paper, we designed and implemented the planar monopole antenna using the coupling effect for the multi-band characteristic. A parasitic element for the multi-band characteristic based on a rectangular patch with single resonance is inserted. Spiral shaped parasitic element is used for minimizing the antenna size and obtaining the multi-resonance characteristic. The frequency characteristics are modified and optimized by varying specific parameters. By inserting an L-shaped resonator at both sides of the feed line which connected through the via hole to the ground plane, unnecessary frequency bands are eliminated. Proposed antenna dimension is $40{\times}60{\times}1mm^3$. It is fabricated on the FR-4 substrate(${\varepsilon}_r$=4.4) using a microstrip line of $50{\Omega}$ for impedance matching. By measurement results, the characteristic of the return loss under -10 dB are 1.714~2.496 GHz, 2.977~4.301 GHz, and 4.721~6.315 GHz, and the radiation patterns have omni-directional shapes.

Design and Implementation of Ultra Wideband Antenna with Resistive Loading (저항성 부하를가진 초광대역 안테나 설계 및 제작)

  • Jeon Sang-Bong;Jung Yong-Hwa;Ahn Chang-Hoi
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.7
    • /
    • pp.1159-1164
    • /
    • 2006
  • Broadband antennas have late-time ringing by multi-reflections between feed points and 0pen ends of the antennas, which indicates the narrowband nature of the antenna. The resistive loading has been used to reduce the late time ringing that is important for ground penetrating radar and resonance detection systems in order to prevent masking of target. In this paper, we design an ultra wide band antenna with resistive loading technique to reduce the internal reflections within the antenna.. The designed antenna is implemented and tested to show inIproved characteristics.

The Optimal Design of a Triple-Band Antenna with Additional Arm Resonating Structure for LTE, ISM and WLAN Application (LTE, ISM, WLAN에 적용 가능한 Arm 구조 삼중대역 안테나 최적 설계)

  • Lee, Seung-Je;Oh, Seung-Hun;Lee, Jeong-Hyeok;Kim, Hyeong-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.12
    • /
    • pp.1655-1660
    • /
    • 2014
  • In this paper, we propose a design of a triple-band microstrip circular patch antenna. The proposed antenna generates the triple frequency resonance at 1.85GHz(LTE), 2.45GHz(ISM) and 5.5GHz(WLAN). Firstly, we design the dual-band antenna. The dual-band antenna consist of the circular patch, slits, and the slot. The circular patch and slot are designed for dual frequency of 2.45GHz and 5.5GHz, respectively. And then the dual-band antenna is combined with additional arm-shaped structure for the triple-band characteristic. The arm-shaped structure is operated as the dipole. It is designed for lowest frequency of 1.85GHz. Each part of the antenna unites to a new structure. In order to design the proposed antenna automatically and optimally, APSO algorithm is adopted. During APSO, the mismatch of the proposed antenna is resolved. The optimal designed antenna has an acceptable return loss(-10dB) at each bands(i.e, 1.85GHz, 2.45GHz and 5.5GHz).

Design of a MIMO Antenna Using a RF MEMS Element (RF MEMS 소자를 이용한 MIMO 안테나 설계)

  • Lee, Won-Woo;Rhee, Byung-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.12
    • /
    • pp.1113-1119
    • /
    • 2013
  • In this letter, a new approach is proposed for the design of a multi antenna for MIMO wireless devices. The proposed antenna covers various LTE(Long Term Evolution) service bands: band 17(704~746 MHz), band 13(746~787 MHz), band 5(824~894 MHz), and band 8(880~960 MHz). The proposed main antenna consists of a conventional monopole antenna with an inverted L-shaped slit for wideband operation. The proposed the LTE sub antenna is based on a switch loaded loop antenna structure, with a resonance frequency that can be controlled by capacitance of a logic circuit. The tuning technique for the LTE Rx antenna uses a RF MEMS(Micro-Electro mechanical system) to match the impedances to realize the bands of interest. Because the two proposed antennas are polarized orthogonally to each other, the ECC(Envelope Correlation Coefficient) characteristic between two antennas was measured to be very low (below 0.06) with an isolation characteristic below -20 dB between the two antennas in the operating overall LTE bands. The proposed antenna is particularly attractive for mobile devices that integrate LTE multiple systems.

Design a Non-Slot Step Folded PIFA and Analyze the Characteristic for Dual-Band GSM and W-CDMA

  • Lee, Vea-O;Ko, Hyun-Jung;Park, Sang-Bok;Cheon, Chang-Yul;Jeong, Yong-Seek
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2008.08a
    • /
    • pp.3-6
    • /
    • 2008
  • In this paper, we propose the folded PIFA with its made an alteration to a factor of resonance for L-slot PIFA. Proposed antenna maintain diminished size patch and improve each bandwidth of GSM(0.88$\sim$-0.96 GHz) and W-CDMA(1.92$\sim$2,17 GHz) for miniaturized repeater. The non-slot step folded PIFA's structure that design of essence was general L-slot PIFA for dual-band. It has no U-slot, multi band and the another slot. The parameters of proposed antenna were optimized for dual-band and compact size by folded singleness patch. Proposed antenna by using folded singleness patch take satisfaction main point, bandwidth of GSM and W-CDMA, compact patch size($39{\times}21{\times}13mm^3$). The antenna was designed by FDTD simulation tool and it was made from result of simulation. Measured data shown that the proposed non-slot step folded PIFA was strong possibility.

  • PDF

Antenna-Diplexer Module for Cellular/SDMB Band Using LTCC Technology (LTCC 공법을 사용한 Cellular/SDMB 안테나-다이플렉서 모듈)

  • Ha, Jeung-Uk;Chang, Ki-Hun;Yoon, Young-Joong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.7
    • /
    • pp.774-783
    • /
    • 2007
  • This paper presents an integrated packaging antenna-diplexer module for wireless communication systems in the Cellular and SDMB band. The design and the realization of the proposed one are experimentally analyzed and discussed. It consists of a dual-resonance antenna and a diplexer with a multi-layer LTCC(${\varepsilon}_r=7.8,\;tan\;{\delta}=0.0043$) technology with integration capability and low loss. The dual-resonance antenna of the proposed module has the meander line structure for size reduction and has the shorting structure of an inverted F antenna to achieve good impedance matching. The diplexer of the proposed module was designed with the combination of low pass filter(LPF) and high pass filter(HPF). Decreasing the mutual interference between them provides a high isolation characteristic. The proposed antenna-diplexer module with dimensions of $27.5{\times}12.0{\times}2.2mm$ operates within a range from 813 MHz to 902 MHz for the cellular band and from 2,586 MHz to 2,655 MHz for the SDMB band. And the measured gain of the fabricated module is -1.96 dBi for Cellular band and -5.43 dBi for SDMB band. The parameters for the antenna-diplexer module are investigated and the several performances are discussed.

A Design of Multi-Band Chip Antenna for Mobile Handsets (휴대단말기용 다중 대역 칩 안테나 설계)

  • Cho, In-Ho;Jung, Jin-Woo;Lee, Cheon-Hee;Lee, Yong-Hee;Lee, Hyeon-Jin;Lim, Yeong-Seog
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.4
    • /
    • pp.477-483
    • /
    • 2008
  • The paper introduces mobile handset multi-band chip antenna to be used on meander line PIFA structure and parasite patch. The proposed antenna uses an FR-4 substrate. The top layer is consist of meander lines PIFA structure to implement GSM900 and is connected with each rad and meander line on the via-hole for maximize space efficiency. The middle layer is designed with the signal line and gap to implement a DCS and PCS bands, the bottom layer which is added to a parasite patch on the ground can be show an adjust of frequency and impedance character by the connection of the radiators of middle layer and coupling. The fabricated antenna with the dimension of $28{\times}6{\times}4\;mm^3$. The ground plane a dimension of $45{\times}90\;mm$, designed by a commercial software CST simulator. The experimental results show that the bandwidth for(VSWR<3) is 90($875{\sim}965$) MHz in GSM900 band operation and 380($1,670{\sim}2,050$) MHz in DCS, PCS band operation. The maximum gains of antenna are 0.25 dBi, 3.65 dBi and 3.3 dBi at resonance frequencies and it has omni-directional pattern practically.

Development of MR Compatible Coaxial-slot Antenna for Microwave Hyperthermia (초고주파 가열치료를 위한 MR 호환 동축 슬롯 안테나의 개발)

  • Kim, T.H.;Chun, S.I.;Han, Y.H.;Kim, D.H.;Mun, C.W.
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.4
    • /
    • pp.333-340
    • /
    • 2009
  • MR compatible coaxial-slot antenna for microwave hyperthermia was developed while its structure and size of each part were determined by computer simulation using finite element method(FEM). Its local heating performance was evaluated using tissue-mimic phantom and swine muscles. 2% agarose gel mixed with 6mM/$\ell$ $MnCl_2$ as a biological tissue-mimic phantom was heated by the proposed antenna driven by a 2.45GHz microwave generator. The temperature changes of the phantom were monitored using multi-channel digital thermometer at the distance of 0mm, 5mm, 10mm and 20mm from the tip center of the antenna. Also muscle tissue of swine was heated for 2 and 5minutes with 50W and 30W of microwave generator powers, respectively, to evaluate the local heating performance of the antenna. MRI compatibility was also verified by acquiring MR images and MR temperature map. MR signals were acquired from the agarose gel phantom using $T2^*$ GRE sequence with 1.5T clinical MRI scanner(Signa Echospeed, GE, Milwaukee, WI, U.S.A.) at Pusan Paik Hospital and were transferred to PC in order to reconstruct MR images and temperature map using proton resonance frequency(PRF) method and laboratory-developed phase unwrapping algorithm. Authors found that it has no severe distortion due to the antenna inserted into the phantom. Finally, we can conclude that the suggested coaxial-slot antenna has an excellent local heating performance for both of tissue-mimic phantom and swine muscle, and it is compatible to 1.5T MRI scanner.