• Title/Summary/Keyword: Multi-resolution domain

Search Result 70, Processing Time 0.025 seconds

A Numerical Analysis of the Baffled Silencer for the Noise Diminution of Tank Gun (전차포 소음 저감을 위한 배플형 소음기의 수치해석)

  • Ko, Sung-Ho;Lee, Dong-Su;Kang, Kuk-Jeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.3 s.258
    • /
    • pp.217-224
    • /
    • 2007
  • A numerical analysis for a silencer with three baffles of 120mm tank gun has been performed. The Reynolds-Averaged Wavier-Stokes equations with Baldwin-Lomax turbulence model were employed to compute unsteady, compressible flow inside the tank gun and the silencer. An axisymmetric computational domain was constructed by using 12 multi block chimera grids. The resolution of flow field is observed by depicting calculated pressure and muzzle brake force. The peak blast pressure and noise through the silencer reduced approximately 99% and 41dB in comparison to the tank gun without the silencer at near filed.

Guided-Waves-Based Mortar-Filled Steel Pipe Inspection Using EMAT End Wavelet Transform

  • Na Won-Bae;Kim Jeong-Tae;Ryu Yeon-Sun
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.2 s.69
    • /
    • pp.8-15
    • /
    • 2006
  • Guided-waves-based mortar-filled steel pipe inspection is carried out through using EMAT (Electro magnetic acoustic transducer) and wavelet transform. Possibly existing anomalies such as separation (or void) and inclusion are made in the fabricated mortar-fled steel pipes: these anomalies are infected. Since guided waves have the long range inspection capability, EMAT has its own advantages over the conventional PZT (Piezoelectric zirconate titanate), and wavelet transform gives the multi-resolution on time-frequency domain results, the suggested technique gives an alternative way for inspecting mortar-filled steel pipes, which are popularly used for supporting marine structures such as piers, wharfs, moles, and dolphins. Through this study, it is show that the suggested technique is promising for detecting the amounts of separations and inclusions.

Visual Feature Extraction Technique for Content-Based Image Retrieval

  • Park, Won-Bae;Song, Young-Jun;Kwon, Heak-Bong;Ahn, Jae-Hyeong
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.12
    • /
    • pp.1671-1679
    • /
    • 2004
  • This study has proposed visual-feature extraction methods for each band in wavelet domain with both spatial frequency features and multi resolution features. In addition, it has brought forward similarity measurement method using fuzzy theory and new color feature expression method taking advantage of the frequency of the same color after color quantization for reducing quantization error, a disadvantage of the existing color histogram intersection method. Experiments are performed on a database containing 1,000 color images. The proposed method gives better performance than the conventional method in both objective and subjective performance evaluation.

  • PDF

Nano-continuum multi scale analysis using node deactivation techniques (절점 비활성화 기법을 적용한 나노-연속체 멀티스케일 해석 기법)

  • Rhee Seung-Yun;Cho Maeng-Hyo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.395-402
    • /
    • 2006
  • In analyzing the nano-scale phenomena or behaviors of nano devices or materials, it is often desirable to deal with more atoms than can be treated only with a full atomistic simulation. However, even now, it is advisable to apply the atomistic simulation to the narrow region where the deformation field changes rapidly but to apply the conventional continuum model to the region far from that region. This equivalent continuum model can be formulated by applying the Cauchy-Born rule to the exact atomistic potential as in the quasicontinuum method. To couple the atomistic model with the equivalent continuum model, continuum displacements are conformed to the molecular displacements at the discrete positions of the atoms within the bridging domain. To satisfy the coupling constraints, we apply the Lagrange multiplier method. The continuum model in the bridging model should be applied on the region where the deformation field changes gradually. Then we can make the nodal spacing in the continuum model be much larger than the atomic spacing. In the first step, we generate the atomic-resolution mesh with the nodal spacing equal to the atomic spacing, and then we eliminate the nodal degrees of freedom adaptively using the node deactivation techniques. We eliminate more DOFs as the regions are more far from the atomistic region. Computing time and computational resources can be greatly reduced by the present node deactivation technique in multi scale analysis.

  • PDF

Design of a new digital hearing aid based on a multi-band compensation technique (다중밴드 이득 보정기능을 갖는 디지털 청력보정회로 설계)

  • Choi Won-Chul;Lee Je-Hoon;Kim Young-Ju;Cho Kyoung-Rok
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.41 no.1
    • /
    • pp.41-54
    • /
    • 2004
  • In this paper, we propose a new digital hearing aid circuit that compensates the impaired threshold level changing nonlinearly using a multi-band compensation technique. In the algorithm the hearing frequency range 8kHz is divided into 64 bands which is 125Hz resolution. Each band is controlled finely to compensate the hearing impaired proportional to personal ROM table. The multi-band is introduced using a FFT/IFFT Processor which makes to control in frequency domain. As a result, the proposed circuit is more efficient $15\%$ than a conventional ones such as FIR filter architecture in terms of the compensation gun and accuracy. The hardware size was reduced $65\%$ than a general FFT by pre-handling of the input data.

Direct Imaging of Polarization-induced Charge Distribution and Domain Switching using TEM

  • O, Sang-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.99-99
    • /
    • 2013
  • In this talk, I will present two research works in progress, which are: i) mapping of piezoelectric polarization and associated charge density distribution in the heteroepitaxial InGaN/GaN multi-quantum well (MQW) structure of a light emitting diode (LED) by using inline electron holography and ii) in-situ observation of the polarization switching process of an ferroelectric Pb(Zr1-x,Tix)O3 (PZT) thin film capacitor under an applied electric field in transmission electron microscope (TEM). In the first part, I will show that strain as well as total charge density distributions can be mapped quantitatively across all the functional layers constituting a LED, including n-type GaN, InGaN/GaN MQWs, and p-type GaN with sub-nm spatial resolution (~0.8 nm) by using inline electron holography. The experimentally obtained strain maps were verified by comparison with finite element method simulations and confirmed that not only InGaN QWs (2.5 nm in thickness) but also GaN QBs (10 nm in thickness) in the MQW structure are strained complementary to accommodate the lattice misfit strain. Because of this complementary strain of GaN QBs, the strain gradient and also (piezoelectric) polarization gradient across the MQW changes more steeply than expected, resulting in more polarization charge density at the MQW interfaces than the typically expected value from the spontaneous polarization mismatch alone. By quantitative and comparative analysis of the total charge density map with the polarization charge map, we can clarify what extent of the polarization charges are compensated by the electrons supplied from the n-doped GaN QBs. Comparison with the simulated energy band diagrams with various screening parameters show that only 60% of the net polarization charges are compensated by the electrons from the GaN QBs, which results in the internal field of ~2.0 MV cm-1 across each pair of GaN/InGaN of the MQW structure. In the second part of my talk, I will present in-situ observations of the polarization switching process of a planar Ni/PZT/SrRuO3 capacitor using TEM. We observed the preferential, but asymmetric, nucleation and forward growth of switched c-domains at the PZT/electrode interfaces arising from the built-in electric field beneath each interface. The subsequent sideways growth was inhibited by the depolarization field due to the imperfect charge compensation at the counter electrode and preexisting a-domain walls, leading to asymmetric switching. It was found that the preexisting a-domains split into fine a- and c-domains constituting a $90^{\circ}$ stripe domain pattern during the $180^{\circ}$ polarization switching process, revealing that these domains also actively participated in the out-of-plane polarization switching. The real-time observations uncovered the origin of the switching asymmetry and further clarified the importance of charged domain walls and the interfaces with electrodes in the ferroelectric switching processes.

  • PDF

Feasibility Study of EEG-based Real-time Brain Activation Monitoring System (뇌파 기반 실시간 뇌활동 모니터링 시스템의 타당성 조사)

  • Chae, Hui-Je;Im, Chang-Hwan;Lee, Seung-Hwan
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.2
    • /
    • pp.258-264
    • /
    • 2007
  • Spatiotemporal changes of brain rhythmic activity at a certain frequency have been usually monitored in real time using scalp potential maps of multi-channel electroencephalography(EEG) or magnetic field maps of magnetoencephalography(MEG). In the present study, we investigate if it is possible to implement a real-time brain activity monitoring system which can monitor spatiotemporal changes of cortical rhythmic activity on a subject's cortical surface, neither on a sensor plane nor on a standard brain model, with a high temporal resolution. In the suggested system, a frequency domain inverse operator is preliminarily constructed, considering the individual subject's anatomical information, noise level, and sensor configurations. Spectral current power at each cortical vertex is then calculated for the Fourier transforms of successive sections of continuous data, when a single frequency or particular frequency band is given. An offline study which perfectly simulated the suggested system demonstrates that cortical rhythmic source changes can be monitored at the cortical level with a maximal delay time of about 200 ms, when 18 channel EEG data are analyzed under Pentium4 3.4GHz environment. Two sets of artifact-free, eye closed, resting EEG data acquired from a dementia patient and a normal male subject were used to show the feasibility of the suggested system. Factors influencing the computational delay are investigated and possible applications of the system are discussed as well.

MRBR-based JPEG2000 Codec for Stereoscopic Image Compression of 3-Dimensional Digital Cinema (3차원 디지털 시네마의 스테레오 영상 압축을 위한 MRBR기반의 JPEG2000 코덱)

  • Seo, Young-Ho;Sin, Wan-Soo;Choi, Hyun-Jun;Yoo, Ji-Sang;Kim, Dong-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.12
    • /
    • pp.2146-2152
    • /
    • 2008
  • In In this paper, we proposed a new JPEG2000 codec using multiresolution-based rendering (MRBR) technique for video compression of 3-dimensional digital cinema. We introduced discrete wavelet transform (DWT) for stereoscopic image and stereo matching technique in the wavelet domain. The disparity was extracted using stereo matching and transmitted with the reference (left) image. Since the generated right image was degraded by the occlusion lesion, the residual image which is generated from difference between the original right image and the generated one was transmitted at the same tine. The disparity data was extracted using the dynamic programming method in the disparity domain. There is high correlation between the higher and lower subbands. Therefore we decreased the calculation amount and enhanced accuracy by restricting the search window and applying the disparity information generated from higher subband.

ANALYSIS OF VORTEX SHEDDING PHENOMENA AROUND PANTOGRAPH PANHEAD FOR TRAIN USING LARGE EDDY SIMULATION (LES를 이용한 판토그라프 팬헤드의 와 흘림 현상 해석)

  • Jang, Yong-Jun
    • Journal of computational fluids engineering
    • /
    • v.16 no.2
    • /
    • pp.17-23
    • /
    • 2011
  • The turbulent flow and vortex shedding phenomena around pantograph panhead of high speed train were investigated and compared with available experimental data and other simulations. The pantograph head was simplified to be a square-cross-section pillar and assumed to be no interference with other bodies. The Reynolds number (Re) was 22,000. The LES(large eddy simulation) of FDS code was applied to solve the momentum equations and the Wener-Wengle wall model was employed to solve the near wall turbulent flow. Smagorinsky model($C_s$=0.2) was used as SGS(subgrid scale) model. The total grid numbers were about 9 millions and the analyzed domain was divided into 12 multi blocks which were communicated with each other by MPI. The time-averaged mainstream flows were calculated and well compared with experimental data. The phased-averaged quantities had also a good agreement with experimental data. The near-wall turbulence should be carefully treated by wall function or direct resolution to get successful application of LES methods.

A Study on the Blocker Design of Closed Die Forging with Discrete Wavelet Transform (이산 웨이블릿 변환을 이용한 형단조 공정의 예비성형용 금형 설계에 관한 연구)

  • 한상훈;임성한;오수익
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.27-33
    • /
    • 2003
  • In closed-die forging process, blocker has been used to fill and distribute metal well in finisher die. Generally, the blocker shape was determined by an expert with many experiences. However, the manual blocker design process takes much time and efforts, so various automatic methods for the blocker design process have been suggested for the last three decades. The method with filtering in FFT (Fast Fourier Transform) for the blocker design provides general solution than other methods. But, due to the properties of FFT in time-frequency domain, this method has some drawbacks such as long calculation time, difficulty of local control and additional boundary process after filtering. In this study, DWT (Discrete Wavelet Transform), which is more flexible and is more wildly used than FFT, is applied to the blocker design. The method with filtering in DWT is very proper to design blocker in both 2-D and 3-D shapes. To verify the efficiency of this method, blockers of some models are designed and the results show that blocker design with DWT is effective fer the blocker designs

  • PDF