• Title/Summary/Keyword: Multi-resistant bacteria

Search Result 69, Processing Time 0.024 seconds

A Study of Ni-resistant bacteria isolated from gingival crevicular fluid on the patients wearing Ni-Cr alloy prosthesis (In terms of molecular biological aspects) (니켈-크롬 합금 보철물 주위 치은열구 내에서 발견된 니켈 내성 균주에 관한 분자생물학적 연구)

  • Chae, Young-Ah;Woo, Yi-Hyung;Choi, Boo-Byung;Choi, Dae-Gyun;Lee, Sung-Bok;Kwon, Kung-Rock
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.37 no.6
    • /
    • pp.741-755
    • /
    • 1999
  • As a material of metal-ceramic prosthesis, nickel as a form of Ni-Cr alloy has been used for many dental prostheses in many cases. However, several problems in use of the alloy have been revealed (ex : tissue stimulation, skin allergy, hypersensitivity, cytotoxicity and carcinogenecity). Little is known about nickel with respect to the relationship between Ni-prosthesis and gaining of Ni-resistance in oral microorganisms. The present study was undertaken to check wheather use of Ni-prosthesis leads to occurrence of Ni-resistant microorganisms. So this study may suggest the possible relationships between the oral microorganisms and nickel-resistance in oral environment. Bacteria were isolated from the gingival crevicular fluid on the pateints wearing Ni-Cr prosthesis. The isolated bacteria were tested for their Ni-resistance in nickel containing media at different concentration from 3mM to 110mM. E. coli HB101 was used as control. The Ni-resistant bacteria were isolated and biochemically identified. The Ni-resistant bacteria were tested several bio-chemical, molecular-biological tests. Performed tests were ; measuring the growth curve, antibiotic test, growth ability test in liquid media, isolation of the chromosome and plasmid, digestion of DNA by restriction enzyme, electrophoresis of chromosome and plasmid DNA, identification of Ni-resistant genes by the DNA hybridization. The results were as follows: 1) The bacteria isolated from gingival crevicular fluid on the patients wearing Ni-Cr alloy pros-thesis showed nickel-resistance. 2) The isolated microorganisms grew at nickel containing media of high concentrations (60mM-110mM). 3) Based on the biochemical tests, the isolated microorganisms were identified as Enterococcus faecalis(13 cases), Klebsiella pneumoniae(1 case) and Enterobacter gergeviae(1 case). 4) Enterococcus faecalis expressed not only nickel resistance but also the multi-drug resistance to several antibiotics ; chloramphenicol, kanamicin, streptomycin, lincomycin, clindamycin. However, all strain showed the sensitivity against the tetracycline. 5) DNA hybridization result suggest that there is no homology between the previousely known gene of nickel resistance in Klebsiella pneumoniae and chromosomal DNA of Enterococcus faecalis.

  • PDF

The Diversity of Multi-drug Resistance Profiles in Tetracycline-Resistant Vibrio Species Isolated from Coastal Sediments and Seawater

  • Neela Farzana Ashrafi;Nonaka Lisa;Suzuki Satoru
    • Journal of Microbiology
    • /
    • v.45 no.1
    • /
    • pp.64-68
    • /
    • 2007
  • In this study we examined the multi-drug resistance profiles of the tetracycline (TC) resistant genus Vibrio to determine its susceptibility to two ${\beta}-lactams$, ampicillin (ABPC), and mecillinam (MPC), as well as to macrolide, erythromycin (EM). The results showed various patterns of resistance among strains that were isolated from very close geographical areas during the same year, suggesting diverse patterns of drug resistance in environmental bacteria from this area. In addition, the cross-resistance patterns suggested that the resistance determinants among Vibrio spp. are acquired differently within the sediment and seawater environments.

Prevalence of Multi-drug Resistant Bacteria Belonging to Gram Negative Enterobacteriaceae Isolated from a Domestic Stream (국내 하천에서 분리된 그람 음성 Enterobacteriacaea의 항생제 다제내성)

  • Jang, Yejin;Song, Ki-Bong;Chung, In-Young;Kim, Hyuk;Seok, Kwang-Seol;Go, Eun Byeul;Kim, Byeori;Yoo, Yong-Jae;Rhee, Ok-Jae;Chae, Jong-Chan
    • Microbiology and Biotechnology Letters
    • /
    • v.43 no.4
    • /
    • pp.396-400
    • /
    • 2015
  • Enterobacteriaceae is one of the major families responsible for public health threats. Due to the emergence of pathogens with antibiotic resistance, great concern has been raised regarding the prevalence of antibiotic resistant bacteria in natural environments. Therefore, the diversity of Gram negative Enterobacteriaceae was investigated in water samples collected from five streams in Korea using the cultivation method. Profiling of multi-drug resistance was conducted with isolates via disk diffusion assay. The results indicated that the Gram negative Enterobacteriaceae consisted of the following genus; Citrobacter, Enterobacter, Escherichia, Klebsiella, Kluyvera, Pantoea, Plesiomonas, Raoultella, Shigella and Enterobacter. These latter strains represented 49% of identified isolates. In addition, 78.3% of the identified genus exhibited resistance against more than seven out of thirteen tested antibiotics, suggesting a high prevalence of multi-drug resistant bacteria in natural environments.

Ambient Air Waste Sorting Facilities Could Be a Source of Antibiotic Resistant Bacteria

  • Calheiros, Ana;Santos, Joana;Ramos, Carla;Vasconcelos, Marta;Fernandes, Paulo
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.3
    • /
    • pp.367-373
    • /
    • 2021
  • The antimicrobial resistance of Staphylococcus spp. and Gram negative strains present in air samples from waste sorting facilities was assessed. Phenotypic studies have revealed a high percentage of strains of Staphylococcus spp. resistant to methicillin. Genotypically and by RT-PCR, it was found that the mecA gene usually associated with methicillin resistance was present in 8% of the Staphylococcus strains isolated. About 30% of the Gram negative strains from the same samples also displayed resistance to meropenem and 79% of these were resistant to multiple antibiotics from different classes, namely cephalosporins and β-lactams. The results suggest that in professional activities with high levels of exposure to biological agents, the quantification and identification of the microbial flora in the work environment, with the determination of the presence of potential agents displaying multi-resistances is of relevance to the risk assessment. The personal protection of workers is particularly important relevance in these cases, since many of the strains that exhibit multi-resistance are potential opportunistic agents.

Molecular Characterization of Pseudomonas aeruginosa Isolates Resistant to All Antimicrobial Agents, but Susceptible to Colistin, in Daegu, Korea

  • Lee, Yoo-Chul;Ahn, Byung-Jun;Jin, Jong-Sook;Kim, Jung-Uk;Lee, Sang-Hwa;Song, Do-Young;Lee, Won-Kil;Lee, Je-Chul
    • Journal of Microbiology
    • /
    • v.45 no.4
    • /
    • pp.358-363
    • /
    • 2007
  • Multi-drug resistant Pseudomonas aeruginosa has been implicated in a variety of serious therapeutic problems in clinical environments. Among the 968 P. aeruginosa isolates obtained from two hospitals in Daegu, Korea, we acquired 17 isolates that were resistant to all available tested antimicrobial agents, with the exception of colistin (colistin-only sensitive). We characterized the antimicrobial susceptibilities, $metallo-{\beta}-lactamases$, and epidemiological relatedness among the colistin-only sensitive P. aeruginosa isolates. All colistin-only sensitive isolates were positive in the modified Hodge test and imipenem-EDTA synergy test, thereby indicating the production of $metallo-{\beta}-lactamases$. 11 isolates from the secondary hospital and six isolates from the tertiary teaching hospital harbored $bla_{VIM-2}$ and $bla_{IMP-1}$, respectively. The pulsed-field gel electrophoretic analysis of the SpeI-digested DNA from P. aeruginosa isolates indicated that two different clones of colistin-only sensitive P. aeruginosa originated from each hospital, and had spread within the hospital environment. Overall, colistin-only sensitive P. aeruginosa was detected in Korea for the first time, but no pan-drug resistant bacteria were identified. Nationwide surveillance is required in order to monitor the emergence of colistin-only sensitive or pan-drug resistant bacteria.

Synthesis, Characterization and in vitro Antibacterial Studies on Mixed Ligand Complexes of Iron(III) Based on 1,10-phenanthroline

  • Tigineh, Getinet Tamiru;Sitotaw, Getu;Workie, Amogne;Abebe, Atakilt
    • Journal of the Korean Chemical Society
    • /
    • v.65 no.3
    • /
    • pp.203-208
    • /
    • 2021
  • As part of our attempt to discover novel active compounds against multi-drug resistant pathogens, we hereby report two new complexes of iron(III) with formulae: [Fe(L1)2(H2O)2]Cl3 and [Fe(L1)2(L2)(H2O)]Cl2 where L1 = 1,10-phenanthroline (C12H8N2) and L2 = guanide (C5H4N5O-). The synthesized complexes were characterized using spectroscopic analysis (ESI-MS, ICP-OES, FT-IR, and UV-Vis), cyclic voltammetry, CHN analysis, gravimetric chloride determination, melting point determination, and conductance measurement. Octahedral geometries are assigned to both complexes. In vitro antibacterial activity was tested on two Gram-positive (Staphylococcus aureus, Streptococcus epidermidis) and two Gram-negative (Escherichia coli and Klebsiella pneumoniae) bacteria using the disc diffusion method. The complexes demonstrated appreciable activity against these pathogens. Interestingly, the [Fe(L1)2(L2)(H2O)]Cl2 complex manifested a higher degree of inhibition against the drug-resistant Gram-negative bacteria than the commercially available drug, namely erythromycin.

Diversity of ampicillin resistant bacteria in domestic streams (국내 하천에 분포하는 ampicillin 내성균의 다양성)

  • Go, Eun Byeul;Chung, In-Young;Kim, Hyuk;Seok, Kwang-Seol;Kim, Byeori;Yoo, Yong-Jae;Jang, Yejin;Chae, Jong-Chan
    • Korean Journal of Microbiology
    • /
    • v.51 no.4
    • /
    • pp.440-443
    • /
    • 2015
  • The widespread emergence of antibiotic resistant microorganisms in clinics and natural environments has attracted public concern. Especially, microorganisms inhabiting natural environment is considered as a source responsible for increasing the abundance of antibiotic resistant genes in ecosystem. In this study, the diversity of culturable bacteria resistant to ampicillin was investigated with water samples collected from seven locations in Korea. The genera belonging to Aeromonas and Acidovorax were dominant among the isolated 498 strains. The 66% of isolates showed multi-drug resistance against more than six antibiotics among tested fourteen ones and isolates resistant to seven antibiotics were the most prevalent with 19.7% abundance. Using the antibiotics susceptibility results, the intrinsic resistance profile was suggested for the most dominant genera, Aeromonas, Acidovorax, Pseudomonas, and Elizabethkingia.

Antimicrobial Peptide as a Novel Antibiotic for Multi-Drug Resistance "Super-bacteria" (다제내성 슈퍼박테리아에 대한 새로운 항생제인 항균 펩타이드)

  • Park, Seong-Cheol;Nah, Jae-Woon
    • Applied Chemistry for Engineering
    • /
    • v.23 no.5
    • /
    • pp.429-432
    • /
    • 2012
  • According to the requirement of novel antimicrobial agents for the rapidly increasing emergence of multi-drug resistant pathogenic microbes, a number of researchers have found new antibiotics to overcome this resistance. Among them, antimicrobial peptides (AMPs) are host defense molecules found in a wide variety of invertebrate, plant, and animal species, and are promising to new antimicrobial candidates in pharmatherapeutic fields. Therefore, this review introduces the antimicrobial action of antimicrobial peptide and ongoing development as a pharmetherapeutic agent.

Antibacterial Activity of Salvia Miltiorrhiza against Methicillin-resistant Staphylococcus aureus (丹參의 methicillin 내성 황색포도구균에 대한 효과)

  • Seo, Myung-won;Jeong, Seung-il;Shin, Chol-gyun;Ju, Young-sung;Kim, Hong-jun;Ko, Byoung-seob
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.16 no.1
    • /
    • pp.94-99
    • /
    • 2003
  • Objectives : Gram-positive bacteria have became increasing resistant to antibacterial agents, and hence multi-drug-resistant bacterial pathogens are now a major problem in clinical medicine. There is, therefore, a need for new antibacterial agents. In the course of our screening program for potent antibacterial agent from medicinal plants, the extract of Salvia miltiorrhiza (S. miltiorrhiza) showed antibacterial activity against methcillin resistant Staphylococcus aureus (MRSA) and antibiotic-resistant S. aureus. Methods : S. miltiorrhiza was extracted with 80$\%$ EtOH. The extract was suspended in H2O and fractionated successively with hexane chloroform, ethyl acetate, and n-buthanol. The chloroform fraction, which showed the highest antibacterial activity(MICs, 78㎍/ml) against MRSA, was chromatographed on a silica gel column and recycling prep-LC to give the pure antibacterial component. Results and Conclusions : The second fraction among the chloroform soluble portion of an aqueous EtOH extract of S. miltiorrhiza root showed outstanding antibacterial activity against MRSA and antibiotic-resistant S. aureus compared to the other fraction. An active compound was isolated from the second fraction using silica gel column chromatoraphy and recycling prep-LC. Based on these data together with the IH-, 13C-NMR, mass and mp, the active compounds were identified tanshinone Ⅰ, dehydrotanshinone Ⅰ and cryptotanshinone. Among tanshinones, cryptotanshinone and dihydrotanshinone Ⅰ MICs against MRSA and antibiotics-resistant S. aureus were 12.5, 12.5 and 6.3㎍/ml, respectively.

  • PDF

Bactericidal Effect of Cecropin A Fused Endolysin on Drug-Resistant Gram-Negative Pathogens

  • Lim, Jeonghyun;Hong, Juyeon;Jung, Yongwon;Ha, Jaewon;Kim, Hwan;Myung, Heejoon;Song, Miryoung
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.6
    • /
    • pp.816-823
    • /
    • 2022
  • The rapid spread of superbugs leads to the escalation of infectious diseases, which threatens public health. Endolysins derived from bacteriophages are spotlighted as promising alternative antibiotics against multi-drug resistant bacteria. In this study, we isolated and characterized the novel Salmonella typhimurium phage PBST08. Bioinformatics analysis of the PBST08 genome revealed putative endolysin ST01 with a lysozyme-like domain. Since the lytic activity of the purified ST01 was minor, probably owing to the outer membrane, which blocks accessibility to peptidoglycan, antimicrobial peptide cecropin A (CecA) was fused to the N-terminus of ST01 to disrupt the outer membrane. The resulting CecA::ST01 has been shown to have increased bactericidal activity against gram-negative pathogens including Pseudomonas aeruginosa, Klebsiella pneumoniae, Acinetobacter baumannii, Escherichia coli, and Enterobacter cloacae and the most affected target was A. baumannii. In the presence of 0.25 µM CecA::ST01, A. baumannii ATCC 17978 strain was completely killed and CCARM 12026 strain was wiped out by 0.5 µM CecA::ST01, which is a clinical isolate of A. baumannii and resistant to multiple drugs including carbapenem. Moreover, the larvae of Galleria mellonella could be rescued up to 58% or 49% by the administration of CecA::ST01 upon infection by A. baumannii 17978 or CCARM 12026 strain. Finally, the antibacterial activity of CecA::ST01 was verified using 31 strains of five gram-negative pathogens by evaluation of minimal inhibitory concentration. Thus, the results indicate that a fusion of antimicrobial peptide to endolysin can enhance antibacterial activity and the spectrum of endolysin where multi-drug resistant gram-negative pathogens can be efficiently controlled.