• Title/Summary/Keyword: Multi-probiotic

Search Result 16, Processing Time 0.024 seconds

Effects of multi-strain probiotic supplementation on intestinal microbiota, tight junctions, and inflammation in young broiler chickens challenged with Salmonella enterica subsp. enterica

  • Chang, Chi Huan;Teng, Po Yun;Lee, Tzu Tai;Yu, Bi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.11
    • /
    • pp.1797-1808
    • /
    • 2020
  • Objective: This study assessed the effects of probiotics on cecal microbiota, gene expression of intestinal tight junction proteins, and immune response in the cecal tonsil of broiler chickens challenged with Salmonella enterica subsp. enterica. Methods: One-day-old broiler chickens (n = 240) were randomly allocated to four treatments: negative control (Cont), multi-strain probiotic-treated group (Pro), Salmonella-infected group (Sal), and multi-strain probiotic-treated and Salmonella-infected group (ProSal). All chickens except those in the Cont and Pro groups were gavaged with 1×108 cfu/mL of S. enterica subsp. enterica 4 days after hatching. Results: Our results indicated that body weight, weight gain, and feed conversion ratio of birds were significantly reduced (p<0.05) by Salmonella challenge. Chickens challenged with Salmonella decreased cecal microbial diversity. Chickens in the Sal group exhibited abundant Proteobacteria than those in the Cont, Pro, and ProSal groups. Salmonella infection downregulated gene expression of Occludin, zonula occludens-1 (ZO1), and Mucin 2 in the jejunum and Occludin and Claudin in the ileum. Moreover, the Sal group increased gene expression of interferon-γ (IFN-γ), interleukin-6 (IL-6), IL-1β, and lipopolysaccharide-induced tumor necrosis factor-alpha factor (LITAF) and reduced levels of transforming growth factor-β4 and IL-10 compared with the other groups (p<0.05). However, chickens receiving probiotic diets increased Lactobacillaceae abundance and reduced Enterobacteriaceae abundance in the ceca. Moreover, supplementation with probiotics increased the mRNA expression of Occludin, ZO1, and Mucin 2 in the ileum (p<0.05). In addition, probiotic supplementation downregulated the mRNA levels of IFN-γ (p<0.05) and LITAF (p = 0.075) and upregulated IL-10 (p = 0.084) expression in the cecal tonsil. Conclusion: The administration of multi-strain probiotics modulated intestinal microbiota, gene expression of tight junction proteins, and immunomodulatory activity in broiler chickens.

Naturally Derived Probiotic Supplementation Effects on Physiological Properties and Manure Gas Emission of Broiler Chickens

  • Hassan, Md R.;Ryu, Kyeong-Sun
    • Journal of agriculture & life science
    • /
    • v.46 no.4
    • /
    • pp.119-127
    • /
    • 2012
  • To investigate the influence of multi-probiotic, fermented ginseng byproduct and fermented sulfone on the performance, intestinal microflora and immunity of broiler, a five weeks trial was conducted with 340, 1-d-old $Ross{\times}Ross$ broiler. All broilers were divided into five different groups having 68 birds in each treatment, and they were assigned as control, antibiotic avilamycin (AB), multi-probiotic (MP), fermented sulfone (FS) and fermented ginseng byproduct (FGB). Each artificial or naturally derived probiotic was inoculated 0.1% level with the basal diet, and all diets were provided to birds for five weeks. Weight gain and feed intake were measured weekly basis, and blood, spleen and feces were collectedand used for the physiological properties of broiler chickens. All performances and cholesterol profiles were not significantly differed but numerically lower level of neutral fat and LDL was found in multi-probiotics and FGB treatments respectively. The salmonella spp and E. coli numbers in the ileum were high in control in relation to those of other treatments and were significantly decreased in antibiotics treatments (p<0.05). In addition, Lactobacillus spp. showed significantly higher proliferation in MP as compared to that of others (p<0.05). Fecal ammonia and $CO_2$ gas emission was significantly decreased in MP, FGB and FS, respectively (p<0.05), but significantly increased proliferation of spleen was determined in MP group in comparison of other treatments (p<0.05). Therefore, the results indicates that multi-probiotics would be valuable feed additives to improve the salmonella, E. coli and Lactobacillus proliferation, and manure gas emission of broiler chickens, but further study related to the production of manure gas emission of MP is necessary.

Effects of Probiotic and Prebiotic on Average Daily Gain, Fecal Shedding of Escherichia Coli, and Immune System Status in Newborn Female Calves

  • Roodposhti, Pezhman Mohamadi;Dabiri, Najafgholi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.9
    • /
    • pp.1255-1261
    • /
    • 2012
  • Thirty two Holstein female calves (initial body weight = $40{\pm}3.0$ kg) were used to investigate the effects of probiotic and prebiotic on average daily gain (ADG), fecal E. coli count, white blood cell count, plasma IgG1 level and cell-mediated immune response to injection of phytohemagglutinin in suckling female calves. Calves were assigned randomly to one of the four treatments, including whole milk without additives (control), whole milk containing probiotic, whole milk containing prebiotic and whole milk containing probiotic and prebiotic (synbiotic). Average daily gain was greater in calves fed probiotic, prebiotic and synbiotic at weeks 6, 7 and 8 (p<0.05). E. coli count was significantly lower in calves fed probiotic, prebiotic and synbiotic on d 56 (p<0.05). There was no significant difference between treatments in blood samples and cell-mediated response. This study showed that addition of probiotic, prebiotic and combination of these additives to milk enhanced ADG and reduced fecal E. coli count in preruminant calves.

Meta Analysis to Draw the Appropriate Regimen of Enzyme and Probiotic Supplementation to Pigs and Chicken Diets

  • Ohh, Sang-Jip
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.4
    • /
    • pp.573-586
    • /
    • 2011
  • Along with the recent changes in animal feed supply circumstances, many enzyme and probiotic feed supplements have been introduced and applied to pigs and chicken diets. Therefore, both selection of the appropriate feed supplements and their proper supplementation becomes critical to justify the supplementation. Meta-analysis was proposed as an appropriate tool to assess the large amount of relevant information. In this review, reliable data from recent publications was compounded then analyzed to determine the best practice of effective enzyme supplementation from the perspectives of animal species, age, characteristics of feed, target substrates, optimum multi enzymes combination and intended objectives. The results of the analysis suggested pratical methods of probiotic supplementation regarding intestinal microbiota, physiological limitation of probiotics, maximization of the probiotic benefit and synergism with prebiotic supplements.

Development of Probiotic Products and Challenges (프로바이오틱 제품 개발 동향과 과제)

  • Seo, Jae-Gu;Lee, Gwa-Soo;Kim, Jin-Eung;Chung, Myung-Jun
    • KSBB Journal
    • /
    • v.25 no.4
    • /
    • pp.303-310
    • /
    • 2010
  • Probiotics beneficially affect the health of the host via various mechanisms in the intestine. Recent developments in probiotic products have mainly been made to maximize probiotic effects in human. In this regard, probiotic products containing doubly coated or encapsulated cells, multi-species probiotics, or high viable cell number (1010 viable cells/gram or more) have been developed and are already available in the market. Until now, the majority of probiotics contain live cells but little attention has been paid to other alternative products such as heat-killed cell or bacteriocin-containing ones, which could have broad applications due to advantages over live cell-based probiotics, such as safety and stability. In addition, genetically engineered lactic acid bacteria could be of great importance in the field of alimentary health if they are carefully designed for biological safety. Although a number of probiotics are marketed by claiming health benefits, regulations for health claims will be more stringent. Therefore sufficient scientific and clinical evidences supporting the safety and efficacy of the potential probiotic strain will be required by the regulatory authority for a health claim, which thus may have a huge impact on the future probiotic market.

Evaluation of Multi-microbial Probiotics Produced by Submerged Liquid and Solid Substrate Fermentation Methods in Broilers

  • Shim, Y.H.;Shinde, P.L.;Choi, J.Y.;Kim, J.S.;Seo, D.K.;Pak, J.I.;Chae, B.J.;Kwon, I.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.4
    • /
    • pp.521-529
    • /
    • 2010
  • Two experiments were conducted to evaluate multi-microbe submerged liquid (SLF) and solid substrate (SSF) fermented probiotic products in broilers. The SLF and SSF probiotics were comprised of Lactobacillus acidophilus ($1.1{\times}10^9$ and $4{\times}10^8$ cfu/g), Bacillus subtilis ($1.1{\times}10^9$ and $4{\times}10^9$ cfu/g), Saccharomyces cerevisiae ($1.5{\times}10^7$ and $1.0{\times}10^4$ cfu/g) and Aspergillus oryzae ($2.6{\times}10^7$ and $4.3{\times}10^7$ cfu/g), respectively. In Exp. 1, 640 day-old Ross chicks were allotted to 4 treatments, each comprising 4 replicates (40 chicks/replicate). The basal diet was prepared without any antimicrobials (negative control, NC), and 20 mg/kg avilamycin (positive control, PC), 0.3% SLF and 0.3% SSF probiotics were added to the basal diets as treatments. Birds fed PC and SSF diets showed improved (p<0.001) overall weight gain and F/G than birds fed NC and SLF diets; whereas, birds fed SLF diet had better weight gain and F/G than birds fed NC diet. Retention of CP was higher (p<0.05) in birds fed the SSF diet than birds fed PC, SLF and NC diets. Birds fed the SLF diet tended to have higher (p<0.10) cecal total anaerobic bacteria than birds fed PC and NC diets; whereas, lesser cecal coliforms were noticed in birds fed PC, SLF and SSF diets than birds fed the NC diet. In Exp. 2, 640 day-old Ross chicks were randomly allotted to 4 treatments in a $2{\times}2$ factorial arrangement. Each treatment had 4 replicates (40 chicks/replicate). Two different multi-microbe probiotic products (0.3% SLF or SSF) each with two different antibiotics (10 mg/kg colistin, or 20 mg/kg avilamycin) were used as dietary treatments. Birds fed the SSF diet had greater weight gain (p<0.001), better F/G (p<0.05), greater retention of energy (p<0.001) and protein (p<0.05), and lesser cecal Clostridium (d 35) than birds fed SLF diet. Birds fed the colistin-supplemented diet had less (p<0.01) cecal coliforms when compared with birds fed the avilamycin diet. Additionally, birds fed the avilamycin diet had greater energy retention (p<0.05) than birds fed the colistin diet. Thus, the results of this study suggest the multi-microbe probiotic product prepared by a solid substrate fermentation method to be superior to the probiotic product prepared by submerged liquid fermentation; moreover, feeding of probiotics with different antibiotics did not elicit any interaction effect between probiotic and antibiotic.

Effect of Saccharomyces boulardii CNCM-I 3799 and Bacillus subtilis CU-1 on Acute Watery Diarrhea: A Randomized Double-Blind Placebo-Controlled Study in Indian Children

  • Ghosh, Apurba;Sundaram, Balasubramaniam;Bhattacharya, Piyali;Mohanty, Nimain;Dheivamani, Nirmala;Mane, Sushant;Acharyya, Bhaswati;Kamale, Vijay;Poddar, Sumon;Khobragade, Akash;Thomas, Winston;Prabhudesai, Sumant;Choudhary, Ankita;Mitra, Monjori
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.24 no.5
    • /
    • pp.423-431
    • /
    • 2021
  • Purpose: To assess the effect of combination probiotic Saccharomyces boulardii CNCM-I 3799 and Bacillus subtilis CU-1 in outpatient management of acute watery diarrhea in children. Methods: A randomized double-blind placebo-controlled study was conducted in 180 participants aged six months to five years with acute mild to moderate diarrhea. All were enrolled from six centers across India and centrally randomized to receive S. boulardii CNCM-I 3799 and B. subtilis CU-1 or a placebo along with oral rehydration salts and zinc supplementation. Each participant was followed up for three months to assess recurrence of diarrhea. Results: The mean duration of diarrhea in the probiotic and placebo groups were 54.16 hours and 59.48 hours, respectively. The difference in the duration of diarrhea in those administered with probiotic or placebo within 24 hours of diarrhea onset was 25.21 hours. Furthermore, the difference in duration of diarrhea was 13.84 hours (p<0.05) for participants who were administered with probiotics within 48 hours. There were no significant differences in the stool frequencies between the two arms. After three months, 15% in the probiotic group and 18.5% in the placebo group reported episodes of diarrhea. The mean duration of diarrhea was considerably lower in the probiotic group, 31.02 hours versus 48 hours in placebo (p=0.017). Conclusion: S. boulardii CNCM-I 3799 and B. subtilis CU-1 combination was effective in reducing the duration of diarrhea when administered within 48 hours of diarrhea onset. Similarly, it reduced recurrence of diarrhea and its intensity in the subsequent three months.

Psychobiotic Effects of Multi-Strain Probiotics Originated from Thai Fermented Foods in a Rat Model

  • Luang-In, Vijitra;Katisart, Teeraporn;Konsue, Ampa;Nudmamud-Thanoi, Sutisa;Narbad, Arjan;Saengha, Worachot;Wangkahart, Eakapol;Pumriw, Supaporn;Samappito, Wannee;Ma, Nyuk Ling
    • Food Science of Animal Resources
    • /
    • v.40 no.6
    • /
    • pp.1014-1032
    • /
    • 2020
  • This work aimed to investigate the psychobiotic effects of six bacterial strains on the mind and behavior of male Wistar rats. The probiotic (PRO) group (n=7) were rats pre-treated with antibiotics for 7 days followed by 14-day probiotic administration, antibiotics (ANT) group (n=7) were rats treated with antibiotics for 21 days without probiotics. The control (CON) group (n=7) were rats that received sham treatment for 21 days. The six bacterial strains with probiotic properties were mostly isolated from Thai fermented foods; Pedicoccus pentosaceus WS11, Lactobacillus plantarum SK321, L. fermentum SK324, L. brevis TRBC 3003, Bifidobacterium adolescentis TBRC 7154 and Lactococcus lactis subsp. lactis TBRC 375. The probiotics were freeze-dried into powder (6×109 CFU/5 g) and administered to the PRO group via oral gavage. Behavioral tests were performed. The PRO group displayed significantly reduced anxiety level and increased locomotor function using a marble burying test and open field test, respectively and significantly improved short-term memory performance using a novel object recognition test. Antibiotics significantly reduced microbial counts in rat feces in the ANT group by 100 fold compared to the PRO group. Probiotics significantly enhanced antioxidant enzymatic and non-enzymatic defenses in rat brains as assessed using catalase activity and ferric reducing antioxidant power assay, respectively. Probiotics also showed neuroprotective effects with less pyknotic cells and lower frequency of vacuolization in cerebral cortex. This multi-strain probiotic formulation from Thai fermented foods may offer a potential to develop psychobiotic-rich functional foods to modulate human mind and behaviors.

Laying hen responses to multi-strain Bacillus-based probiotic supplementation from 25 to 37 weeks of age

  • Elijah Ogola Oketch;Myunghwan Yu;Jun Seon Hong;Nuwan Chamara Chaturanga;Eunsoo Seo;Hans Lee;Rafael Gustavo Hermes;Natasja Smeets;Apichaya Taechavasonyoo;Susanne Kirwan;Raquel Rodriguez-Sanchez;Jung Min Heo
    • Animal Bioscience
    • /
    • v.37 no.8
    • /
    • pp.1418-1427
    • /
    • 2024
  • Objective: This study aimed to investigate the efficacy of Bacillus-based probiotics supplemented at two different levels to modulate the productive performance, egg quality, tibia traits, and specific cecal bacteria counts of Hy-Line Brown layers from 25 to 37 weeks of age. Methods: A total of 216 twenty-five-week-old hens were randomly distributed into 3 experimental diets with 12 replicates of 6 birds per cage. Diets included basal diet supplemented with 0 (CON), 3×108 (PRO1), or 3×109 (PRO2) colony-forming unit (CFU) of the test probiotic containing Bacillus subtilis PB6, Bacillus subtilis FXA, and Bacillus licheniformis G3 per kilogram of feed. Results: Improved egg weights and mass at 29 weeks; and feed intake at 31 weeks (p<0.10) were noticed with the probiotic-supplemented PRO1 and PRO2 diets. Considering egg quality, the shell thickness, Haugh units, and yolk color were improved; but yolk cholesterol was lowered (p<0.05) with PRO1 and PRO2 diets at 29 weeks. At both 33 and 37 weeks, the egg-breaking strength, shell color and thickness, albumen height, Haugh units, and yolk color were improved; but yolk cholesterol was similarly lowered (p<0.05) with the PRO1 and PRO2 diets. Improved tibia Ca, ash, weights, and density; and raised cecal counts of Bifidobacteria and Lactobacilli (p<0.05) were noticed with PRO1 and PRO2 diets. Improved tibia P but reduced Clostridia counts (p<0.10) were also observed with the PRO1 and PRO2 diets. Conclusion: Probiotic supplementation of Bacillus subtilis PB6, Bacillus subtilis FXA, and Bacillus licheniformis G3 at 3×108 CFU/kg of feed is adequate to significantly improve egg quality, lower yolk cholesterol, enhance several tibia traits, and raise the populations of beneficial cecal bacteria. Modest improvements in several productive parameters and tibia P but reduced Clostridia were also observed; and could warrant further investigation of probiotic effects beyond the current test period.

A Comparison of Feeding Multi-Probiotics and Fermented Ginseng Byproducts on Performance, Intestinal Microflora and Immunity of Broiler Chicks

  • Hassan, Md. Rakibul;Choe, Ho Sung;Ryu, Kyeong Seon
    • Korean Journal of Poultry Science
    • /
    • v.39 no.4
    • /
    • pp.253-260
    • /
    • 2012
  • This study was undertaken to investigate the influence of multi-probiotics, fermented ginseng byproducts and fermented sulfone as an alternative to probiotics on performance, intestinal microflora and immunity of broiler. A five weeks trial was conducted with one day old Ross${\times}$Ross broilers (n=340), divided into five groups which further divided into 4 replicates with 17 birds in each replicate. Birds were assigned to 5 dietary treatments as control, antibiotic avilamycin (AB), multi-probiotics (MP), fermented sulfone (FS) and fermented ginseng byproducts (FGB). Growth parameters were recorded on weekly basis while rest of the parameters viz. blood and faeces were collected at the end of the experiment. Growth parameters were not affected statistically by dietary treatments. However, numerically, higher body weight, splenocytes proliferation and lower total cholesterol and LDL values were found in MP treatment (P>0.05). Salmonella spp. count ($P{\leq}0.001$) and E. coli (P<0.001) concentrations in the ileum were found lowest in AB treatment while FS group showed lowest level of yeast (P<0.10) and Lactobacillus spp. ($P{\leq}0.001$). Fecal ammonia and $CO_2$ emission was significantly decreased in FGB than other dietary treatments (P<0.05). It was concluded that multi-probiotics would be valuable feed additives to improve the growth performance, Lactobacillus proliferation and immunity of broiler chicks.