Browse > Article
http://dx.doi.org/10.5713/ajas.2010.90446

Evaluation of Multi-microbial Probiotics Produced by Submerged Liquid and Solid Substrate Fermentation Methods in Broilers  

Shim, Y.H. (Department of Animal Resources Science, College of Animal Life Science, Kangwon National University)
Shinde, P.L. (Department of Animal Resources Science, College of Animal Life Science, Kangwon National University)
Choi, J.Y. (Department of Animal Resources Science, College of Animal Life Science, Kangwon National University)
Kim, J.S. (Department of Animal Resources Science, College of Animal Life Science, Kangwon National University)
Seo, D.K. (Department of Animal Products and Food Science, College of Animal Life Science, Kangwon National University)
Pak, J.I. (Department of Animal Products and Food Science, College of Animal Life Science, Kangwon National University)
Chae, B.J. (Department of Animal Resources Science, College of Animal Life Science, Kangwon National University)
Kwon, I.K. (Department of Animal Products and Food Science, College of Animal Life Science, Kangwon National University)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.23, no.4, 2010 , pp. 521-529 More about this Journal
Abstract
Two experiments were conducted to evaluate multi-microbe submerged liquid (SLF) and solid substrate (SSF) fermented probiotic products in broilers. The SLF and SSF probiotics were comprised of Lactobacillus acidophilus ($1.1{\times}10^9$ and $4{\times}10^8$ cfu/g), Bacillus subtilis ($1.1{\times}10^9$ and $4{\times}10^9$ cfu/g), Saccharomyces cerevisiae ($1.5{\times}10^7$ and $1.0{\times}10^4$ cfu/g) and Aspergillus oryzae ($2.6{\times}10^7$ and $4.3{\times}10^7$ cfu/g), respectively. In Exp. 1, 640 day-old Ross chicks were allotted to 4 treatments, each comprising 4 replicates (40 chicks/replicate). The basal diet was prepared without any antimicrobials (negative control, NC), and 20 mg/kg avilamycin (positive control, PC), 0.3% SLF and 0.3% SSF probiotics were added to the basal diets as treatments. Birds fed PC and SSF diets showed improved (p<0.001) overall weight gain and F/G than birds fed NC and SLF diets; whereas, birds fed SLF diet had better weight gain and F/G than birds fed NC diet. Retention of CP was higher (p<0.05) in birds fed the SSF diet than birds fed PC, SLF and NC diets. Birds fed the SLF diet tended to have higher (p<0.10) cecal total anaerobic bacteria than birds fed PC and NC diets; whereas, lesser cecal coliforms were noticed in birds fed PC, SLF and SSF diets than birds fed the NC diet. In Exp. 2, 640 day-old Ross chicks were randomly allotted to 4 treatments in a $2{\times}2$ factorial arrangement. Each treatment had 4 replicates (40 chicks/replicate). Two different multi-microbe probiotic products (0.3% SLF or SSF) each with two different antibiotics (10 mg/kg colistin, or 20 mg/kg avilamycin) were used as dietary treatments. Birds fed the SSF diet had greater weight gain (p<0.001), better F/G (p<0.05), greater retention of energy (p<0.001) and protein (p<0.05), and lesser cecal Clostridium (d 35) than birds fed SLF diet. Birds fed the colistin-supplemented diet had less (p<0.01) cecal coliforms when compared with birds fed the avilamycin diet. Additionally, birds fed the avilamycin diet had greater energy retention (p<0.05) than birds fed the colistin diet. Thus, the results of this study suggest the multi-microbe probiotic product prepared by a solid substrate fermentation method to be superior to the probiotic product prepared by submerged liquid fermentation; moreover, feeding of probiotics with different antibiotics did not elicit any interaction effect between probiotic and antibiotic.
Keywords
Broilers; Multi-microbial Probiotics; Fermentation Methods; Performance; Nutrient Retention; Cecal Microflora;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 5  (Related Records In Web of Science)
Times Cited By SCOPUS : 9
연도 인용수 순위
1 El-bendary, M. A. 2006. Bacillus thuringiensis and Bacillus sphaericus biopesticides production. J. Basic Microbiol. 46:158-170   DOI   PUBMED   ScienceOn
2 AOAC. 1990. Official Method of Analysis. 15th edn. Association of Official Analytical Chemists, Arlington, VA
3 Badu, K. R. and T. Satyanarayana. 1995. α-Amylase production by thermophilic Bacillus coagulans in solid state fermentation. Process Biochem. 30:305-309   DOI   ScienceOn
4 Dibner, J. J. and J. D. Richards. 2005. Antibiotic growth promoters in agriculture: history and mode of action. Poult. Sci. 84:634-643   PUBMED   ScienceOn
5 Ferket, P. R. 2004. Alternatives to antibiotics in poultry production: responses, practical experience and recommendations. In: Nutritional biotechnology in the feed and food industries (Ed. T.P. Lyons and K.A. Jacques)
6 Nottingham University Press, Nottingham. pp. 57-67. Fuller, R. 1989. Probiotics in man and animals - a review. J. Appl. Bacterol. 66:365-378   DOI
7 Kabir, S. M. L., M. M. Rahman, M. B. Rahman, M. M. Rahman and S. U. Ahmed. 2004. The dynamics of probiotics on growth performance and immune response in broilers. Int. J. Poult. Sci. 3:361-364   DOI
8 Line, E. J., S. J. Bailey, N. A. Cox, N. J. Stern and T. Tompkins. 1998. Effect of yeast-supplemented feed on Salmonella and Campylobacter populations in broilers. Poult. Sci. 77:405-410   PUBMED   ScienceOn
9 Mitchell, D. A. and B. K. Lonsane. 1992. Definition characteristics and potential. In: Solid substrate cultivation (Ed. H. W. Doelle, D. A. Mitchell and C. E. Rolz). Elsevier, London. pp. 1-16
10 Mountzouris, K. C., P. Tsirtsikos, E. Kalamara, S. Nitsch, G. Schatzmayr and K. Fegeros. 2007. Evaluation of the efficacy of a probiotic containing Lactobacillus, Bifidobacterium, Enterococcus, and Pediococcus strains in promoting broiler performance and modulating cecal microflora composition and metabolic activities. Poult. Sci. 86:309-317   PUBMED   ScienceOn
11 Owings, W. J., D. L. Reynolds, R. J. Hasiak and P. R. Ferket. 1990. Influence of a dietary supplementation with Streptococcus faecium M-74 on broiler body weight, feed conversion, carcass characteristics and intestinal microbial colonization. Poult. Sci. 69:1257-1264   DOI   PUBMED   ScienceOn
12 Tannock, G. W. 2001. Molecular assessment of intestinal microflora. Am. J. Clin. Nutr. 73:410-414
13 Robinson, T., D. Singh and P. Nigam. 2001. Solid-state fermentation: a promising microbial technology for secondary metabolite production. Appl. Microbiol. Biotechnol. 55:284-289   DOI   ScienceOn
14 Pascual, M., M. Hugas, J. I. Badiola, J. M. Monfort and M. Garriga. 1999. Lactobacillus salivarius CTC2197 prevents Salmonella enteritidis colonization in chickens. Appl. Environ. Microbiol. 65:4981-4986   PUBMED   ScienceOn
15 Fenton, T. W. and M. Fenton. 1979. An improved method for chromic oxide determination in feed and feces. Can. J. Anim. Sci. 59:631-634   DOI
16 Battan, B., J. Sharma and R. C. Kuhad. 2006. High-level xylanase production by alkaliphilic Bacillus pumilus ASH under solidstate fermentation. World J. Microbiol. Biotechnol. 22:1281-1287   DOI   ScienceOn
17 Chen, K.-L., W.-L. Kho, S.-H. You, R.-H. Yeh, S.-W. Tang and C.-W. Hsieh. 2009. Effects of Bacillus subtilis var. natto and Saccharomyces cerevisiae mixed fermented feed on the enhanced growth performance of broilers. Poult. Sci. 88:309-315   DOI   ScienceOn
18 Jin, L. Z., Y. W. Ho, N. Abdullah and S. Jalaudin. 1997. Probiotics in poultry: modes of action. World's Poult. Sci. J. 53:351-368   DOI   ScienceOn
19 Patel, H. M., R. Wang, O. Chandrashekar, S. S. Pandiella and C. Webb. 2004. Proliferation of Lactobacillus plantarum in solidstate fermentation of oats. Biotechnol. Prog. 20:110-116   DOI   ScienceOn
20 Hu, J., W. Lu, C. Wang, R. Zhu and J. Qiao. 2008. Characteristics of solid-state fermented feed and its effects on performance and nutrient digestibility in growing-finishing pigs. Asian-Aust. J. Anim. Sci. 21:1635-1641
21 Weitnauer, G., A. Muhlenweg, A. Trefzer, D. Hoffmeister, R. D. Sussmuth, G. Jung, K. Welzel, A. Vente, U. Girreser and A. Bechthold. 2001. Biosynthesis of the orthosomycin antibiotic avilamycin A: deductions from the molecular analysis of the avi biosynthetic gene cluster of Streptomyces viridochromogenes Tu57 and production of new antibiotics. Chem. Biol. 8:569-581   DOI   ScienceOn
22 Pollman, D. S., D. M. Danielson and E. R. Peo. 1980. Effects of microbial feed additives on performance of starter and growing-finishing pigs. J. Anim. Sci. 51:577-581
23 SAS. 1996. SAS/STAT. User's Guide: Statistics (Release 6.12 Ed.). SAS Inst. Inc., Cary. NC
24 Ziv, G. 1981. Clinical pharmacology of polymyxins. J. Am. Vet. Med. Assoc. 179:711-715   PUBMED
25 Lu, M. Y., I. S. Maddox and J. D. Brooks. 1998. Application of a multi-layer packed bed reactor to citric acid production in solid state fermentation using Aspergillus niger. Process Biochem. 33:117-123   DOI   ScienceOn
26 Timmerman, H. M., C. J. M. Koningb, L. Mulderc, F. M. Romboutsd and A. C. Beynen. 2004. Monostrain, multistrain and multispecies probiotics: A comparison of functionality and efficacy. Int. J. Food Microbiol. 96:219-233   DOI   ScienceOn
27 Wellenreiter, R. H., D. H. Mowrey, L. A. Stobbs and J. A. D'assonville. 2000: Effects of avilamycin on performance of broiler chickens. Vet. Ther. 1(2):118-124   PUBMED
28 Jernigan, M. A., R. D. Miles and A. S. Arafa. 1985. Probiotics in poultry nutrition - a review. World's Poult. Sci. J. 41:99-107   DOI
29 Ross, R. P., C. Desmond, G. F. Fitzgerald and C. Stanton. 2005. Overcoming the technological hurdles in the development of probiotic foods. J. Appl. Microbiol. 98:1410-1417   DOI   ScienceOn
30 Cavazzoni, V., A. Adami and C. Castrovilli. 1998. Performance of broiler chicken supplemented with Bacillus coagilans as probiotic. Br. Poult. Sci. 39:526-529   DOI   ScienceOn
31 Barrow, P. A. 1992. Probiotics for chickens. In: Probiotics: The Scientific Basis (Ed. R. Fuller). Chapman and Hall, London. pp. 225-257
32 Raimbault, M. 1998. General and micorbiological aspects of solid substrate fermentation. Electron. J. Biotechnol. 1(3):1-15
33 Denev, S. A. 2006. Effect of different growth promoters on the cecal microflora and performance of broiler chickens. Bulg. J. Agric. Sci. 12:461-474
34 National Research Council. 1994. Nutrient Requirements of Poultry. 9th Ed. National Academy Press, Washington, DC
35 Choi, J. Y., P. L. Shinde, I. K. Kwon, Y. H. Song and B. J. Chae. 2009. Effect of wood vinegar on the performance, nutrient digestibility and intestinal microflora in weanling pigs. Asian- Aust. J. Anim. Sci. 22:267-274
36 Nousiainen, J. and J. Setala. 1993. Lactic acid bacteria as animal probiotics. In: Lactic acid bacteria (Ed. S. Salminen and A. won Wright). Marcel Dekker, New York. pp. 315-356
37 Sanders, M. E. and J. H. Veld. 1999. Bringing a probiotic containing functional food to the market: microbiological, product, regulatory and labeling issues. Antonie van Leeuwenhoek 76: 93-315
38 Stavric, S. and E. T. Kornegay. 1995. Microbial probiotic for pigs and poultry. In: Biotechnology in animal feeds and animal feeding (Ed. R. J. Wallace and A. Chesson). VCH, Weinheim, pp. 205-231   DOI
39 Graminha, E. B. N., A. Z. L. Goncalves, R. D. P. B. Pirota, M. A. A. Balsalobre, R. Da Silva and E. Gomes. 2008. Enzyme production by solid-state fermentation: application to animal nutrition. Anim. Feed Sci. Technol. 144:1-22   DOI   ScienceOn
40 Moore, S. 1963. On the determination of cystine as cysteric acid. J. Biol. Sci. 238:235
41 Ohh, S. H., P. L. Shinde, Z. Jin, J. Y. Choi, T.-W. Hahn, H. T. Lim, G. Y. Kim, Y. Park, K.-S. Hahm and B. J. Chae. 2009. Potato (Solanum tuberosum L. cv. Gogu valley) protein as an antimicrobial agent in the diets of broilers. Poult. Sci. 88:1227-1234   DOI   ScienceOn