• Title/Summary/Keyword: Multi-objective optimal design

Search Result 305, Processing Time 0.026 seconds

Control System Synthesis Using BMI: Control Synthesis Applications

  • Chung, Tae-Jin;Oh, Hak-Joon;Chung, Chan-Soo
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.2
    • /
    • pp.184-193
    • /
    • 2003
  • Biaffine Matrix Inequality (BMI) is known to provide the most general framework in control synthesis, but problems involving BMI's are very difficult to solve because nonconvex optimization should be solved. In the previous paper, we proposed a new solver for problems involving BMI's using Evolutionary Algorithms (EA). In this paper, we solve several control synthesis examples such as Reduced-order control, Simultaneous stabilization, Multi-objective control, $H_{\infty}$ optimal control, Maxed $H_2$ / $H_{\infty}$control design, and Robust $H_{\infty}$ control. Each of these problems is formulated as the standard BMI form, and solved by the proposed algorithm. The performance in each case is compared with those of conventional methods.

An investigation of non-linear optimization methods on composite structures under vibration and buckling loads

  • Akbulut, Mustafa;Sarac, Abdulhamit;Ertas, Ahmet H.
    • Advances in Computational Design
    • /
    • v.5 no.3
    • /
    • pp.209-231
    • /
    • 2020
  • In order to evaluate the performance of three heuristic optimization algorithms, namely, simulated annealing (SA), genetic algorithm (GA) and particle swarm optimization (PSO) for optimal stacking sequence of laminated composite plates with respect to critical buckling load and non-dimensional natural frequencies, a multi-objective optimization procedure is developed using the weighted summation method. Classical lamination theory and first order shear deformation theory are employed for critical buckling load and natural frequency computations respectively. The analytical critical buckling load and finite element calculation schemes for natural frequencies are validated through the results obtained from literature. The comparative study takes into consideration solution and computational time parameters of the three algorithms in the statistical evaluation scheme. The results indicate that particle swarm optimization (PSO) considerably outperforms the remaining two methods for the special problem considered in the study.

A Optimization of Butterfly Valve using the Characteristic Function (특성함수를 이용한 Butterfly Valve의 최적설계)

  • Park, Young-Chul;Choi, Jong-Sub;Kang, Jin
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.3
    • /
    • pp.59-65
    • /
    • 2005
  • In today's industry, the butterfly valve has been used to control a flow effectively. However, it is difficult to have the existing structural optimization using field analysis from CFD to structure analysis when the structure is influenced by fluid. Therefore, an initial model of this study is to evaluate the stability of the valve using FEM and CFD. And, it selected variable using initial analysis results. Also, it accomplished the shape optimization design using the orthogonal arrangement and characteristic function. Research result, a few experiments showed the optimal results of there dimensional structures to be multi-objective.

A Permanent Magnet Pole Shape Optimization for a 6MW BLDC Motor by using Response Surface Method (II) (RSM을 이용한 6MW BLDC용 영구자석의 형상 최적화 연구 (II))

  • Woo, Sung-Hyun;Chung, Hyun-Koo;Shin, Pan-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.701-702
    • /
    • 2008
  • An adaptive response surface method with Latin Hypercube sampling strategy is employed to optimize a magnet pole shape of large scale BLDC motor to minimize the cogging torque. The proposed algorithm consists of the multi-objective Pareto optimization and (1+${\lambda}$) evolution strategy to find the global optimal points with relatively fewer sampling data. In the adaptive RSM, an adaptive sampling point insertion method is developed utilizing the design sensitivities computed by using finite element method to get a reasonable response surface with a relatively small number of sampling points. The developed algorithm is applied to the shape optimization of PM poles for 6 MW BLDC motor, and the cogging torque is reduced to 19% of the initial one.

  • PDF

최적 보행 동작 구현을 위한 시뮬레이션 기반 Jansen Mechanism 활용 보행 로봇 설계 및 구현

  • Kim, Seung-Ha;Lee, Su-Hong
    • Proceeding of EDISON Challenge
    • /
    • 2017.03a
    • /
    • pp.534-538
    • /
    • 2017
  • There are three types of robots that move on the ground classified as drivetrain. Wheels, tracks and Legs. Wheels and tracks are much easier to construct and control, but they have problems passing through obstacles like people. This paper discusses the design of line tracing using Theo Jansen, one of multi-legged walking mechanism. In order to increase the moving speed, the Jansen mechanism is designed by maximizing the objective variable as GL (Ground Length), GAC (Ground Angle Coefficient). In this project, only three sensors were attached and Arduino was used for optimal control of the motor using the sensor values.

  • PDF

Multi-response optimization of crashworthiness parameters of bi-tubular structures

  • Vinayagar, K.;Kumar, A. Senthil
    • Steel and Composite Structures
    • /
    • v.23 no.1
    • /
    • pp.31-40
    • /
    • 2017
  • This article aims at presenting multi objective optimization of parameters that affect crashworthiness characteristics of bi-tubular structures using Taguchi method with grey relational analysis. To design the experiments, the $L_9$ orthogonal array has been used and based on that, the inner tubes have been fabricated by varying the three influence factors such as reference diameter, length difference and numbers of sides of the polygon with three levels, but all the outer cylinders have the same diameter and length 90 mm and 135 mm respectively. Then, the tailor made bi-tubular steel structures were subjected into quasi static axial compression. From the test results it is found that the crushing behaviors of bi-tubular structures with different combinations were fairly significant. The important responses (crashworthiness indicators) specific energy absorption and crush force efficiency have been evaluated from load - displacement curve. Finally optimal levels of parameters were identified using grey relational analysis, and significance of parameters was determined by analysis of variance. The optimum crashworthiness parameters are reference diameter 80 mm, length difference 0 mm and number of sides of polygon is 3, i.e., triangle within the selected nine bi-tube combinations.

Optimal Design of Tire Sidewall Contours for Improving Maneuverability and Durability (조정성과 내구성 향상을 위한 타이어 측벽형상 최적설계)

  • Jo, Jin-Rae;Jeong, Hyeon-Seong;Lee, Hong-U;Kim, Nam-Jeon;Kim, Gi-Un
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.10
    • /
    • pp.1636-1643
    • /
    • 2001
  • Automobile maneuverability and tire durability are significantly influenced by the sidewall tire contour. In order to improve these tire performances, it is very important far one to determine a sidewall contour producing the ideal tension and strain-energy distributions. However, these requirements can nut be simultaneously achieved by conventional non-interactive multi-objective optimization methods based on mathematical programming, because these exhibit the conflicting behavior each other, with respect lo the sidewall contour. Therefore, we execute the tire contour optimization fur improving the maneuverability and the tire durability using satisficing trade-off method.

Topology Optimization for Large-displacement Compliant Mechanisms Using Element Free Galerkin Method

  • Du, Yixian;Chen, Liping
    • International Journal of CAD/CAM
    • /
    • v.8 no.1
    • /
    • pp.1-10
    • /
    • 2009
  • This paper presents a topology optimization approach using element-free Galerkin method (EFGM) for the optimal design of compliant mechanisms with geometrically non-linearity. Meshless method has an advantage over the finite element method(FEM) because it is more capable of handling large deformation resulted from geometrical nonlinearity. Therefore, in this paper, EFGM is employed to discretize the governing equations and the bulk density field. The sensitivity analysis of the optimization problem is performed by incorporating the adjoint approach with the meshless method. The Lagrange multipliers method adjusted for imposition of both the concentrated and continuous essential boundary conditions in the EFGM is proposed in details. The optimization mathematical formulation is developed to convert the multi-criteria problem to an equivalent single-objective problem. The popularly applied interpolation scheme, solid isotropic material with penalization (SIMP), is used to indicate the dependence of material property upon on pseudo densities discretized to the integration points. A well studied numerical example has been applied to demonstrate the proposed approach works very well and the non-linear EFGM can obtain the better topologies than the linear EFGM to design large-displacement compliant mechanisms.

Two-stage layout-size optimization method for prow stiffeners

  • Liu, Zhijun;Cho, Shingo;Takezawa, Akihiro;Zhang, Xiaopeng;Kitamura, Mitsuru
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.44-51
    • /
    • 2019
  • Designing sophisticate ship structures that satisfy several design criteria simultaneously with minimum weight and cost is an important engineering issue. For a ship structure composed of a shell and stiffeners, this issue is more serious because their mutual effect has to be addressed. In this study, a two-stage optimization method is proposed for the conceptual design of stiffeners in a ship's prow. In the first stage, a topology optimization method is used to determine a potential stiffener distribution based on the optimal results, whereupon stiffeners are constructed according to stiffener generative theory and the material distribution. In the second stage, size optimization is conducted to optimize the plate and stiffener sections simultaneously based on a parametric model. A final analysis model of the ship-prow structure is presented to assess the validity of this method. The analysis results show that the two-stage optimization method is effective for stiffener conceptual design, which provides a reference for designing actual stiffeners for ship hulls.

Budget Estimation Problem for Capacity Enhancement based on Various Performance Criteria (다중 평가지표에 기반한 도로용량 증대 소요예산 추정)

  • Kim, Ju-Young;Lee, Sang-Min;Cho, Chong-Suk
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.5
    • /
    • pp.175-184
    • /
    • 2008
  • Uncertainties are unavoidable in engineering applications. In this paper we propose an alpha reliable multi-variable network design problem under demand uncertainty. In order to decide the optimal capacity enhancement, three performance measures based on 3E(Efficiency, Equity, and Environmental) are considered. The objective is to minimize the total budget required to satisfy alpha reliability constraint of total travel time, equity ratio, and total emission, while considering the route choice behavior of network users. The problem is formulated as the chance-constrained model for application of alpha confidence level and solved as a lexicographic optimization problem to consider the multi-variable. A simulation-based genetic algorithm procedure is developed to solve this complex network design problem(NDP). A simple numerical example ispresented to illustrate the features of the proposed NDP model.