• 제목/요약/키워드: Multi-objective Optimization Problem

검색결과 306건 처리시간 0.027초

텐세그리티 구조물 설계를 위한 다목적 최적화 기법에 관한 연구 (Multi-objective Optimization for Force Design of Tensegrity Structures)

  • Ohsaki, Makoto;Zhang, Jingyao;Kim, Jae-Yeol
    • 한국공간구조학회논문집
    • /
    • 제8권1호
    • /
    • pp.49-56
    • /
    • 2008
  • 텐세그리티 구조물의 설계를 위한 다목적 최적화 기법이 제시되었다. 구조물의 기하가 먼저 주어지며, 설계변수는 부재력이다. 목적함수는 최대 강성매트릭스에 대한 최저 고유치와 찾고자 하는 목표값으로부터 가장 근접하게 일치하는 부재력이다. 복수의 목적함수 문제가 구속조건을 도입하여 일련의 단일 목적함수 문제로 전환되었다. 본 논문의 타당성을 알아보기 위해 텐세그리티 그리드에 대한 최적해를 구해 보았다.

  • PDF

골리앗 크레인의 공주행 거리와 와이어 교체 최소를 고려한 최적 블록 리프팅 계획 (Optimal Block Lifting Scheduling Considering the Minimization of Travel Distance at an Idle State and Wire Replacement of a Goliath Crane)

  • 노명일;이규열
    • 한국CDE학회논문집
    • /
    • 제15권1호
    • /
    • pp.1-10
    • /
    • 2010
  • Recently, a shipyard is making every effort to efficiently manage equipments of resources such as a gantry crane, transporter, and so on. So far block lifting scheduling of a gantry crane has been manually performed by a manager of the shipyard, and thus it took much time to get scheduling results and moreover the quality of them was not optimal. To improve this, a block lifting scheduling system of the gantry crane using optimization techniques was developed in this study. First, a block lifting scheduling problem was mathematically formulated as a multi-objective optimization problem, considering the minimization of travel distance at an idle state and wire replacement during block lifting. Then, to solve the problem, a meta-heuristic optimization algorithm based on the genetic algorithm was proposed. To evaluate the efficiency and applicability of the developed system, it was applied to an actual block lifting scheduling problem of the shipyard. The result shows that blocks can be efficiently lifted by the gantry crane using the developed system, compared to manual scheduling by a manager.

Life-cycle cost optimization of steel moment-frame structures: performance-based seismic design approach

  • Kaveh, A.;Kalateh-Ahani, M.;Fahimi-Farzam, M.
    • Earthquakes and Structures
    • /
    • 제7권3호
    • /
    • pp.271-294
    • /
    • 2014
  • In recent years, along with the advances made in performance-based design optimization, the need for fast calculation of response parameters in dynamic analysis procedures has become an important issue. The main problem in this field is the extremely high computational demand of time-history analyses which may convert the solution algorithm to illogical ones. Two simplifying strategies have shown to be very effective in tackling this problem; first, simplified nonlinear modeling investigating minimum level of structural modeling sophistication, second, wavelet analysis of earthquake records decreasing the number of acceleration points involved in time-history loading. In this paper, we try to develop an efficient framework, using both strategies, to solve the performance-based multi-objective optimal design problem considering the initial cost and the seismic damage cost of steel moment-frame structures. The non-dominated sorting genetic algorithm (NSGA-II) is employed as the optimization algorithm to search the Pareto optimal solutions. The constraints of the optimization problem are considered in accordance with Federal Emergency Management Agency (FEMA) recommended design specifications. The results from numerical application of the proposed framework demonstrate the capabilities of the framework in solving the present multi-objective optimization problem.

효용이론과 수정콤플렉스법에 기초한 사출 성형품의 다특성 최적화를 위한 자동 금형 설계 (Automated Mold Design to Optimize Multi-Quality Characteristics in Injection Molded Parts Based on the Utility Theory and Modified Complex Method)

  • 박종천
    • 한국정밀공학회지
    • /
    • 제17권9호
    • /
    • pp.210-221
    • /
    • 2000
  • Plastic mold designers and frequently faced with optimizing multi-quality issues in injection molded parts. These issues are usually in conflict with each other and thus tradeoff needs to be made to reach a final compromised solution. in this study an automated injection molding design methodology has been developed to optimize multi-quality characteristics of injection molded parts. The features of the proposed methodology are as follows : first utility theory is applied to transform the original multi-objective problem into single-objective problem. Second is an implementation of a direct search-based injection molding optimization procedure with automated consideration of robustness against process variation. The modified complex method is used as a general optimization tool in this study. The developed methodology was applied to an actual mold design and the results showed that the methodology was useful through the CAE simulation using a commercial injection molding software package. Applied to production this study will be of immense value to companies in reducing the product development time and enhancing the product quality.

  • PDF

Multi-Objective Design Optimization of Composite Stiffened Panel Using Response Surface Methodology

  • Murugesan, Mohanraj;Kang, Beom-Soo;Lee, Kyunghoon
    • Composites Research
    • /
    • 제28권5호
    • /
    • pp.297-310
    • /
    • 2015
  • This study aims to develop efficient composite laminates for buckling load enhancement, interlaminar shear stress minimization, and weight reduction. This goal is achieved through cover-skin lay-ups around skins and stiffeners, which amplify bending stiffness and defer delamination by means of effective stress distribution. The design problem is formulated as multi-objective optimization that maximizes buckling load capability while minimizing both maximum out-of-plane shear stress and panel weight. For efficient optimization, response surface methodology is employed for buckling load, two out-of-plane shear stresses, and panel weight with respect to one ply thickness, six fiber orientations of a skin, and four stiffener heights. Numerical results show that skin-covered composite stiffened panels can be devised for maximum buckling load and minimum interlaminar shear stresses under compressive load. In addition, the effects of different material properties are investigated and compared. The obtained results reveal that the composite stiffened panel with Kevlar material is the most effective design.

오염부하량 할당에 있어서 다목적 유전알고리즘의 적용 방법에 관한 연구 (Application of multi-objective genetic algorithm for waste load allocation in a river basin)

  • 조재현
    • 환경영향평가
    • /
    • 제22권6호
    • /
    • pp.713-724
    • /
    • 2013
  • In terms of waste load allocation, inequality of waste load discharge must be considered as well as economic aspects such as minimization of waste load abatement. The inequality of waste load discharge between areas was calculated with Gini coefficient and was included as one of the objective functions of the multi-objective waste load allocation. In the past, multi-objective functions were usually weighted and then transformed into a single objective optimization problem. Recently, however, due to the difficulties of applying weighting factors, multi-objective genetic algorithms (GA) that require only one execution for optimization is being developed. This study analyzes multi-objective waste load allocation using NSGA-II-aJG that applies Pareto-dominance theory and it's adaptation of jumping gene. A sensitivity analysis was conducted for the parameters that have significant influence on the solution of multi-objective GA such as population size, crossover probability, mutation probability, length of chromosome, jumping gene probability. Among the five aforementioned parameters, mutation probability turned out to be the most sensitive parameter towards the objective function of minimization of waste load abatement. Spacing and maximum spread are indexes that show the distribution and range of optimum solution, and these two values were the optimum or near optimal values for the selected parameter values to minimize waste load abatement.

A Study on Multi-Objective Fuzzy Optimum Design of Truss Structures

  • 모재근;갈심;안모;진운주
    • 한국공간구조학회논문집
    • /
    • 제3권2호
    • /
    • pp.77-83
    • /
    • 2003
  • This paper presents decision making method of structural multi-objective fuzzy optimum problem. The data and behavior of many engineering systems are not know precisely and the designer is required to design the system in the presence of fuzziness in the multi-goals, constraints and consequences of possible actions. In this paper, in order to find a satisfactory solution, the membership functions are constructed for the fuzzy objectives subject to the fuzzy constraints, and two approaches are presented by using the different types of fuzzy decision making. Thus, multi-objective fuzzy optimum problem can be converted into single objective non-fuzzy optimum problem and satisfactory solution of the multi-objective fuzzy optimum problem can be found with general optimum programming. Illustrative numerical example of the ten bar truss for minimum weight and minimum deflection is provided to demonstrate the process of finding the solution and the results are discussed.

  • PDF

An Interference Avoidance Method Using Two Dimensional Genetic Algorithm for Multicarrier Communication Systems

  • Huynh, Chuyen Khoa;Lee, Won Cheol
    • Journal of Communications and Networks
    • /
    • 제15권5호
    • /
    • pp.486-495
    • /
    • 2013
  • In this article, we suggest a two-dimensional genetic algorithm (GA) method that applies a cognitive radio (CR) decision engine which determines the optimal transmission parameters for multicarrier communication systems. Because a CR is capable of sensing the previous environmental communication information, CR decision engine plays the role of optimizing the individual transmission parameters. In order to obtain the allowable transmission power of multicarrier based CR system demands interference analysis a priori, for the sake of efficient optimization, a two-dimensionalGA structure is proposed in this paper which enhances the computational complexity. Combined with the fitness objective evaluation standard, we focus on two multi-objective optimization methods: The conventional GA applied with the multi-objective fitness approach and the non-dominated sorting GA with Pareto-optimal sorting fronts. After comparing the convergence performance of these algorithms, the transmission power of each subcarrier is proposed as non-interference emission with its optimal values in multicarrier based CR system.

계수조건부 LMI를 이용한 다목적 제어기 설계 (Multi-Objective Controller Design using a Rank-Constrained Linear Matrix Inequality Method)

  • 김석주;김종문;천종민;권순만
    • 제어로봇시스템학회논문지
    • /
    • 제15권1호
    • /
    • pp.67-71
    • /
    • 2009
  • This paper presents a rank-constrained linear matrix inequality (LMI) approach to the design of a multi-objective controller such as $H_2/H_{\infty}$ control. Multi-objective control is formulated as an LMI optimization problem with a nonconvex rank condition, which is imposed on the controller gain matirx not Lyapunov matrices. With this rank-constrained formulation, we can expect to reduce conservatism because we can use separate Lyapunov matrices for different control objectives. An iterative penalty method is applied to solve this rank-constrained LMI optimization problem. Numerical experiments are performed to illustrate the proposed method.

NSGA-II를 통한 딤플채널의 다중목적함수 최적화 (Multi-Objective Optimization of a Dimpled Channel Using NSGA-II)

  • 이기돈;압두스 사마드;김광용
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.113-116
    • /
    • 2008
  • This work presents numerical optimization for design of staggered arrays of dimples printed on opposite surfaces of a cooling channel with a fast and elitist Non-Dominated Sorting of Genetic Algorithm (NSGA-II) of multi-objective optimization. As Pareto optimal front produces a set of optimal solutions, the trends of objective functions with design variables are predicted by hybrid multi-objective evolutionary algorithm. The problem is defined by three non-dimensional geometric design variables composed of dimpled channel height, dimple print diameter, dimple spacing and dimple depth to maximize heat transfer rate compromising with pressure drop. Twenty designs generated by Latin hypercube sampling were evaluated by Reynolds-averaged Navier-Stokes solver and the evaluated objectives were used to construct Pareto optimal front through hybrid multi-objective evolutionary algorithm. The optimum designs were grouped by k-mean clustering technique and some of the clustered points were evaluated by flow analysis. With increase in dimple depth, heat transfer rate increases and at the same time pressure drop also increases, while opposite behavior is obtained for the dimple spacing. The heat transfer performance is related to the vertical motion of the flow and the reattachment length in the dimple.

  • PDF