• 제목/요약/키워드: Multi-objective

검색결과 2,128건 처리시간 0.027초

익형 형상 설계를 위한 실수기반 적응영역 다목적 유전자 알고리즘 연구 (A Study on Real-Coded Adaptive Range Multi-Objective Genetic Algorithm for Airfoil Shape Design)

  • 정성기;김지홍
    • 한국항공우주학회지
    • /
    • 제41권7호
    • /
    • pp.509-515
    • /
    • 2013
  • 본 연구에서 익형 형상 설계를 위해 전역적 다목적 최적화 기법인 적응영역 다목적 유전자 알고리즘 코드를 개발하였다. 저마하수에서 최대 양력과 순항조건에서 최대 양항비를 동시에 만족시키기 위해 목적함수로 양력계수와 양항비를 선정하였으며, 익형 형상 설계를 위해 PARSEC 기법을 이용하였다. 그 결과 참조 익형 대비 나은 공력 특성을 나타내는 2개의 익형이 선택되었으며 최대 양력과 양항비는 첫 번째 익형에 대해 약 4.89%, 5.38% 증가하였으며, 두 번째 익형에 대해 약 7.13%, 4.33% 증가하였다.

Multi-Objective Optimization for a Reliable Localization Scheme in Wireless Sensor Networks

  • Shahzad, Farrukh;Sheltami, Tarek R.;Shakshuki, Elhadi M.
    • Journal of Communications and Networks
    • /
    • 제18권5호
    • /
    • pp.796-805
    • /
    • 2016
  • In many wireless sensor network (WSN) applications, the information transmitted by an individual entity or node is of limited use without the knowledge of its location. Research in node localization is mostly geared towards multi-hop range-free localization algorithms to achieve accuracy by minimizing localization errors between the node's actual and estimated position. The existing localization algorithms are focused on improving localization accuracy without considering efficiency in terms of energy costs and algorithm convergence time. In this work, we show that our proposed localization scheme, called DV-maxHop, can achieve good accuracy and efficiency. We formulate the multi-objective optimization functions to minimize localization errors as well as the number of transmission during localization phase. We evaluate the performance of our scheme using extensive simulation on several anisotropic and isotropic topologies. Our scheme can achieve dual objective of accuracy and efficiency for various scenarios. Furthermore, the recently proposed algorithms require random uniform distribution of anchors. We also utilized our proposed scheme to compare and study some practical anchor distribution schemes.

다중 선형 시불변 모델에 대한 다목적 $H_2/H_{\infty}$ 제어기 설계 (The Design of Multi-Objective $H_2/H_{\infty}$ Controllers for multiple linear Time-invariant models)

  • 조도현;원영진;이종용
    • 대한전자공학회논문지TE
    • /
    • 제42권3호
    • /
    • pp.13-18
    • /
    • 2005
  • 본 논문은 안정화 조절기와 추종 성능을 확보하기 위하여 폴리도프 모델를 갖는 도립진자 시스템의 다목적 $H_2/H_{\infty}$ 제어기를 설계를 나타낸다. 꼭지점 기법을 갖는 LMI 설계 기법에 의하여 폴리토프 모델에 대한 다목적 제어기를 설계한다. 각 폴리포프 모델에 대하여 설계된 제어기에 의해 제어된 도립진자를 경사각의 초기값에 대한 수직 각을 안정하게 연직 위치로 복원시키는 곳을 관찰한다.

Metamodel based multi-objective design optimization of laminated composite plates

  • Kalita, Kanak;Nasre, Pratik;Dey, Partha;Haldar, Salil
    • Structural Engineering and Mechanics
    • /
    • 제67권3호
    • /
    • pp.301-310
    • /
    • 2018
  • In this paper, a multi-objective multiparameter optimization procedure is developed by combining rigorously developed metamodels with an evolutionary search algorithm-Genetic Algorithm (GA). Response surface methodology (RSM) is used for developing the metamodels to replace the tedious finite element analyses. A nine-node isoparametric plate bending element is used for conducting the finite element simulations. Highly accurate numerical data from an author compiled FORTRAN finite element program is first used by the RSM to develop second-order mathematical relations. Four material parameters-${\frac{E_1}{E_2}}$, ${\frac{G_{12}}{E_2}}$, ${\frac{G_{23}}{E_2}}$ and ${\upsilon}_{12}$ are considered as the independent variables while simultaneously maximizing fundamental frequency, ${\lambda}_1$ and frequency separation between the $1^{st}$ two natural modes, ${\lambda}_{21}$. The optimal material combination for maximizing ${\lambda}_1$ and ${\lambda}_{21}$ is predicted by using a multi-objective GA. A general sensitivity analysis is conducted to understand the effect of each parameter on the desired response parameters.

Elite-initial population for efficient topology optimization using multi-objective genetic algorithms

  • Shin, Hyunjin;Todoroki, Akira;Hirano, Yoshiyasu
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제14권4호
    • /
    • pp.324-333
    • /
    • 2013
  • The purpose of this paper is to improve the efficiency of multi-objective topology optimization using a genetic algorithm (GA) with bar-system representation. We proposed a new GA using an elite initial population obtained from a Solid Isotropic Material with Penalization (SIMP) using a weighted sum method. SIMP with a weighted sum method is one of the most established methods using sensitivity analysis. Although the implementation of the SIMP method is straightforward and computationally effective, it may be difficult to find a complete Pareto-optimal set in a multi-objective optimization problem. In this study, to build a more convergent and diverse global Pareto-optimal set and reduce the GA computational cost, some individuals, with similar topology to the local optimum solution obtained from the SIMP using the weighted sum method, were introduced for the initial population of the GA. The proposed method was applied to a structural topology optimization example and the results of the proposed method were compared with those of the traditional method using standard random initialization for the initial population of the GA.

유사도 개념을 이용한 다목적 모듈화 설계법 (Multi-Objective Modular Design Method Using Similarity Concept)

  • 남윤희
    • 산업경영시스템학회지
    • /
    • 제35권4호
    • /
    • pp.16-23
    • /
    • 2012
  • At present, the significance of a new manufacturing system that can shift from 'mass production' and consider life cycles of a product is pointed out and extremely expected. In such a situation, it is recognized that the modular design, often called 'unit design,' is the important design methodology which realizes the new production system enabling 'cost reduction,' 'flexible production of a multi-functional artifact,' 'settlement of an environmental issue,' and so on. A module (unit) of a product is generally defined as 'the parts group made into the sub-system from a certain specific viewpoint.' So far, there have been many researches related to the modular design. However, they are often limited to a certain viewpoint (objective). This paper proposes a simple but effective method for multi-objective modular design. In the proposed method, a new design metric, called similarity index, is proposed to evaluate the modular design candidates from the multiple viewpoints.

Pareto 최적점 기반 다목적함수 기법에 의한 이중선각유조선의 최적 구조설계 (Optimum Structural Design of D/H Tankers by using Pareto Optimal based Multi-objective function Method)

  • 나승수;염재선;한상민
    • 대한조선학회논문집
    • /
    • 제42권3호
    • /
    • pp.284-289
    • /
    • 2005
  • A structural design system is developed for the optimum design of double hull tankers based on the multi-objective function method. As a multi-objective function method, Pareto optimal based random search method is adopted to find the minimum structural weight and fabrication cost. The fabrication cost model is developed by considering the welding technique, welding poses and assembly stages to manage the fabrication man-hour and process. In this study, a new structural design is investigated due to the rapidly increased material cost. Several optimum structural designs on the basis of high material cost are carried out based on the Pareto optimal set obtained by the random search method. The design results are compared with existing ship, which is designed under low material cost.

다목적 유전자알고리즘을 이용한 첨단기술산업 시설물의 스마트 미진동제어 (Smart Microvibration Control of High-Tech Industry Facilities using Multi-Objective Genetic Algorithm)

  • 김현수;강주원;김영식
    • 한국공간구조학회논문집
    • /
    • 제13권2호
    • /
    • pp.37-45
    • /
    • 2013
  • Reduction of microvibration is regarded as important in high-technology facilities with high precision equipments. In this paper, smart control technology is used to improve the microvibration control performance. Mr damper is used to make a smart base isolation system amd fuzzy logic control algorithm is employed to appropriately control the MR damper. In order to develop optimal fuzzy control algorithm, a multi-objective genetic algorithm is used in this study. As an excitation, a train-induced ground acceleration is used for time history analysis and three-story example building structure is employed. Microvibration control performance of passive and smart base isolation systems have been investigated in this study. Numerical simulation results show that the multi-objective genetic algorithm can provide optimal fuzzy logic controllers for smart base isolation system and the smart control system can effectively reduce microvibration of a high-technology facility subjected to train-induced excitation.

Multi-Objective Handover in LTE Macro/Femto-Cell Networks

  • Roy, Abhishek;Shin, Jitae;Saxena, Navrati
    • Journal of Communications and Networks
    • /
    • 제14권5호
    • /
    • pp.578-587
    • /
    • 2012
  • One of the key elements in the emerging, packet-based long term evolution (LTE) cellular systems is the deployment of multiple femtocells for the improvement of coverage and data rate. However, arbitrary overlaps in the coverage of these femtocells make the handover operation more complex and challenging. As the existing handover strategy of LTE systems considers only carrier to interference plus noise ratio (CINR), it often suffers from resource constraints in the target femtocell, thereby leading to handover failure. In this paper, we propose a new efficient, multi-objective handover solution for LTE cellular systems. The proposed solution considers multiple parameters like signal strength and available bandwidth in the selection of the optimal target cell. This results in a significant increase in the handover success rate, thereby reducing the blocking of handover and new sessions. The overall handover process is modeled and analyzed by a three-dimensional Markov chain. The analytical results for the major performance metrics closely resemble the simulation results. The simulation results show that the proposed multi-objective handover offers considerable improvement in the session blocking rates, session queuing delay, handover latency, and goodput during handover.

Resource Allocation for Relay-Aided Cooperative Systems Based on Multi-Objective Optimization

  • Wu, Runze;Zhu, Jiajia;Hu, Hailin;He, Yanhua;Tang, Liangrui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권5호
    • /
    • pp.2177-2193
    • /
    • 2018
  • This paper studies resource allocation schemes for the relay-aided cooperative system consisting of multiple source-destination pairs and decode-forward (DF) relays. Specially, relaying selection, multisubcarrier pairing and assignment, and power allocation are investigated jointly. We consider a combinatorial optimization problem on quality of experience (QoE) and energy consumption based on relay-aided cooperative system. For providing better QoE and lower energy consumption we formulate a multi-objective optimization problem to maximize the total mean opinion score (MOS) value and minimize the total power consumption. To this end, we employ the nondominated sorting genetic algorithm version II (NSGA-II) and obtain sets of Pareto optimal solutions. Specially, two formulas are devised for the optimal solutions of the multi-objective optimization problems with and without a service priority constraint. Moreover, simulation results show that the proposed schemes are superior to the existing ones.