• Title/Summary/Keyword: Multi-materials

Search Result 2,944, Processing Time 0.025 seconds

Designing a nanocrystal-based temperature and strain multi-sensor with one-step inkjet printing

  • Bang, Junsung;Ahn, Junhyuk;Oh, Soong Ju
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.218-222
    • /
    • 2021
  • Wearable multi-sensors based on nanocrystals have attracted significant attention, and studies on patterning technology to implement such multi-sensors are underway. Conventional patterning processes may affect material properties based on high temperatures and harsh chemical conditions. In this study, we developed an inkjet printing technique that can overcome these drawbacks through the application of patterning processes at room temperature and atmospheric pressure. Nanocrystal-based ink is used to adjust properties efficiently. Additionally, the viscosity and surface tension of the solvents are investigated and optimized to increase patterning performance. In the patterning process, the electrical, electrothermal, and electromechanical properties of the nanocrystal pattern are controlled by the ligand exchange process. Experimental results demonstrate that a multi-sensor with a temperature coefficient of resistance of 3.82 × 10-3 K-1 and gauge factor of 30.6 can be successfully fabricated using one-step inkjet printing.

Prediction of Permeability for Multi-axial Braided Preform by Using CVFEM (검사체적 유한요소법을 이용한 다축 브레이드 프리폼의 투과율 계수 예측)

  • Y. S. Song;K. Chung;T. J. Kang;J. R. Youn
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.68-70
    • /
    • 2002
  • Prediction of 3-D permeability tensor for multi-axial preform is critical to model and design the manufacturing process of composites by considering resin flow through the multi-axial fiber structure. In this study, the in-plane and transverse permeabilities for braided preform are predicted numerically. The flow analyses are calculated by using 3-D CVFEM(control volume finite element method) for macro-unit cells. To avoid checker-board pressure field and improve the efficiency of numerical computation, a new interpolation function for velocity is proposed on the basis of analytic solutions. Permeability of a braided preform is measured through unidirectional flow experiment and compared with the permeability calculated numerically. Unlike other studies, the current study is based on more realistic unit cell and prediction of permeability is improved.

  • PDF

In-Situ Fabrication of Micro-channeled Multi Tubular Solid Oxide Fuel Cell using Multi-pass Extrusion Process (다중압출 공정을 이용한 마이크로 채널 다중 원통형 고체산화물 연료전지의 in-situ 제조)

  • Byun, Ki-Cheon;Rahman, AHM Esfakur;Kim, Jong-Hee;Lee, Byong-Taek
    • Korean Journal of Materials Research
    • /
    • v.17 no.6
    • /
    • pp.313-317
    • /
    • 2007
  • In-situ micro-channeled multi tubular solid oxide fuel cell(SOFC) was fabricated using multi-pass extrusion process with out side diameter of 2.7 mm and active length of 5 mm that contained 61 individual cells. Cell materials used in this work were NiO-YSZ (50 : 50 vol.%), 8 mol% yttria-stabilized zirconia(8YSZ), $La_{0.8}Sr_{0.2}MnO_3(LSM)$ as anode, electrolyte, and cathode, respectively. The arrangement of each electrode and electrolyte layer in green bodies showed uniformity and integrity after extrusion and sintering. The XRD analysis confirmed that no reaction phases appeared and the microstructure of the electrolyte was fairly dense (relative density > 96%) after sintering.

Effect of Humidity on Tribological Behavior of Si-DLC/DLC Multi-layer

  • Yi, J.W.;Kim, J.K.;Kim, S.S.;Kim, D.G.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.159-160
    • /
    • 2002
  • To investigate the humidity effect on tribological behaviors of Si-DLC/DLC multi-layers, the samples were prepared using a system consisted of an ion-gun for deposition DLC films and a balanced magnetron sputter for introducing silicon atoms to Si-DLC films. The Si-DLC/DLC multi-layers were composed of pure DLC films and Si-incorporated DLC films alternatively and had different bilayer numbers. Hardness and residual stress were drastically decreased through the formation of Si-DLC/DLC multi-layers compared to those of the pure and Si-incorporated DLC films. Wear results obtained under the various humidity conditions (<10%, $40{\sim}50%$, and >85%) showed that the pure DLC film was largely depended on the humidity while the Si-DLC and the Si-DLC/DLC multi-layers were little affected by the environmental humidity. Although friction coefficients of all samples were increased with the relative humidity, the multi-layer films showed relatively lower friction coefficients that those of the single films.

  • PDF

Chloride diffusion in concrete associated with single, dual and multi cation types

  • Song, Zijian;Jiang, Linhua;Zhang, Ziming
    • Computers and Concrete
    • /
    • v.17 no.1
    • /
    • pp.53-66
    • /
    • 2016
  • Currently, most of the investigations on chloride diffusion were based on the experiments and simulations concerning single cation type chlorides. Chloride diffusion associated with dual or multi cation types was rarely studied. In this paper, several groups of diffusion experiments are conducted using chloride solutions containing single, dual and multi cation types. A multi-ionic model is also proposed to simulate the chloride diffusion behavior in the experimental tests. The MATLAB software is used to numerically solve the nonlinear PDEs in the multi-ionic model. The experimental and simulated results show that the chloride diffusion behavior associated with different cation types is significantly different. When the single cation type chlorides are adopted, it is found that the bound rates of chloride ions combined with divalent cations are greater than those combined with monovalent cations. When the dual/multi cation type chlorides are adopted, the chloride bound rates increase with the $Ca^{2+}/Mg^{2+}$ percentage in the source solutions. This evidence indicates that the divalent cations would markedly enhance the chloride binding capacity and reduce the chloride diffusivity. Moreover, on the basis of the analysis, it is also found that the complicated cation types in source solutions are beneficial to reducing the chloride diffusivity.

Multi-step Metals Additive Manufacturing Technologies

  • Oh, Ji-Won;Park, Jinsu;Choi, Hanshin
    • Journal of Powder Materials
    • /
    • v.27 no.3
    • /
    • pp.256-267
    • /
    • 2020
  • Metal additive manufacturing (AM) technologies are classified into two groups according to the consolidation mechanisms and densification degrees of the as-built parts. Densified parts are obtained via a single-step process such as powder bed fusion, directed energy deposition, and sheet lamination AM technologies. Conversely, green bodies are consolidated with the aid of binder phases in multi-step processes such as binder jetting and material extrusion AM. Green-body part shapes are sustained by binder phases, which are removed for the debinding process. Chemical and/or thermal debinding processes are usually devised to enhance debinding kinetics. The pathways to final densification of the green parts are sintering and/or molten metal infiltration. With respect to innovation types, the multi-step metal AM process allows conventional powder metallurgy manufacturing to be innovated continuously. Eliminating cost/time-consuming molds, enlarged 3D design freedom, and wide material selectivity create opportunities for the industrial adoption of multi-step AM technologies. In addition, knowledge of powders and powder metallurgy fuel advances of multi-step AM technologies. In the present study, multi-step AM technologies are briefly introduced from the viewpoint of the entire manufacturing lifecycle.

Development of Multi-Porous Diamond Wheel for Smooth and Mirror Finishing of Die Materials (금형재료의 정밀연삭을 위한 다기공 다이아몬드 숫돌의 개발)

  • 허성중
    • Journal of the Korean Professional Engineers Association
    • /
    • v.30 no.6
    • /
    • pp.144-152
    • /
    • 1997
  • Development of diamond wheel with fine grains and multi-pore structures were newely attempted to be studied in this paper. Wheels, that are employed for the smooth and mirrow finishing of die materials such as tungsten carbide alloy using tool and die materials, must have both performances to remove tool marks efficiently and to contact elastically with curved surfaces. Diamond abrasive grains were bonded firmly by a melamine to prevent the decrease of machining efficiency due to grain sinking within the bond materials. Also, highly foamed structures were developed to increase the flexibility of the wheel, and to induce active self-sharpening by increasing contact pressure between the wheel and work sufaces. In this paper, melamine-bonded diamond wheels are trial manufactured, then the forming method of wheels are explained.

  • PDF

Thermal Insulation Property due to Internal Air-layer Content of Warm Multi Layer Materials by using Numerical Analysis (수치해석을 이용한 다겹보온자재의 내부공기층 함유에 따른 보온 특성)

  • Chung, Sung-Won
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.4
    • /
    • pp.97-103
    • /
    • 2012
  • This study investigates thermal insulation properties of multi layer materials depending on thickness of air layers. Numerical analysis on the heat flow of different insulating materials was conducted to identify whether their temperature distributions demonstrate the reduced rate of heat transfer conclusively or not. Analytical model is divided into two categories. One is to distinguish temperature distribution of the air-layer materials from the non-air layer ones. The other is to compare the efficacy between eight-layered insulating materials with no air-layer contained and three-layered insulating materials which include an air-layer definitely. In the latter case, the identical thickness is assigned to each material. The effect of thermal insulation by including an air-layer is verified in the first analytical model. The result of the second model shows that the insulation of the eight-layered materials is coterminous at the three-layered ones with an air-layer and the thermal insulation of the two materials is imperceptible. The benefits of cost and energy saving are anticipated if air-layers are efficiently incorporated in multi layer insulating materials in a greenhouse.