• Title/Summary/Keyword: Multi-material interaction

Search Result 78, Processing Time 0.029 seconds

A Design of Color-identifying Multi Vehicle Controller for Material Delivery Using Adaptive Fuzzy Controller (적응 퍼지제어기를 이용한 컬러식별 Multi Vehicle의 물류이송을 위한 다중제어기 설계)

  • Kim, Hun-Mo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.5
    • /
    • pp.42-49
    • /
    • 2001
  • In This paper, we present a collaborative method for material delivery using a distributed vehicle agents system. Generally used AGV(Autonomous Guided Vehicle) systems in FA(Factory Automation) require extraordinary facilities like guidepaths and landmarks and have numerous limitations for application in different environments. Moreover in the case of controlling multi vehicles, the necessity for developing corporation abilities like loading and unloading materials between vehicles including different types is increasing nowadays for automation of material flow. Thus to compensate and improve the functions of AGV, it is important to endow vehicles with the intelligence to recognize environments and goods and to determine the goal point to approach. In this study we propose an interaction method between hetero-type vehicles and adaptive fuzzy logic controllers for sensor-based path planning methods and material identifying methods which recognizes color. For the purpose of carrying materials to the goal, simple color sensor is used instead of intricate vision system to search for material and recognize its color in order to determine the goal point to transfer it to. The technique for the proposed method will be demonstrated by experiment.

  • PDF

Fabrication of Biochip by Hydrophobic Interaction (무작위 조립법을 이용한 바이오칩의 제작)

  • Choi, Yong-Sung;Moon, Jong-Dae;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.404-405
    • /
    • 2006
  • Microarray-based DNA chips provide an architecture for multi-analyte sensing. In this paper, we report a new approach for DNA chip microarray fabrication. Multifunctional DNA chip microarray was made by immobilizing many kinds of biomaterials on transducers (particles). DNA chip microarray was prepared by randomly distributing a mixture of the particles on a chip pattern containing thousands of m-scale sites. The particles occupied a different sites from site to site. The particles were arranged on the chip pattern by the random fluidic self-assembly (RFSA) method, using a hydrophobic interaction for assembly.

  • PDF

Integrating the Hoek-Brown Failure Criterion into the Holmquist-Johnson-Cook Concrete Material Model to Reflect the Characteristics of Field Rock Mass in LS-DYNA Blast Modeling (LS-DYNA 발파 모델링에서 현장암반의 특성을 반영하기 위한 Hoek-Brown 파괴기준과 Holmquist-Johnson-Cook 콘크리트 재료모델의 접목)

  • Choi, Byung-Hee;Sunwoo, Choon;Jung, Yong-Bok
    • Explosives and Blasting
    • /
    • v.38 no.3
    • /
    • pp.15-29
    • /
    • 2020
  • In this paper the Hoek-Brown (HB) failure criterion is integrated into the Holmquist-Johnson-Cook (HJC) concrete material model to reflect the inherent characteristics of field rock masses in LS-DYNA blast modeling. This is intended to emphasize the distinctive characteristics of field rock masses that usually have many geological discontinuities. The replacement is made only for the static strength part of the HJC material model by using a statistical curve fitting technique, and its procedure is described in detail. An example is also given to illustrate the use of the obtained HJC material model. Computation is performed for a plane strain model of a single-hole blasting on a field limestone by using the combination of the fluid-structure interaction (FSI) technique and the multi-material arbitrary Lagrangian Eulerian (MMALE) method in LS-DYNA.

Coupled foot-shoe-ground interaction model to assess landing impact transfer characteristics to ground condition

  • Kim, S.H.;Cho, J.R.;Choi, J.H.;Ryu, S.H.;Jeong, W.B.
    • Interaction and multiscale mechanics
    • /
    • v.5 no.1
    • /
    • pp.75-90
    • /
    • 2012
  • This paper investigates the effects of sports ground materials on the transfer characteristics of the landing impact force using a coupled foot-shoe-ground interaction model. The impact force resulting from the collision between the sports shoe and the ground is partially dissipated, but the remaining portion transfers to the human body via the lower extremity. However, since the landing impact force is strongly influenced by the sports ground material we consider four different sports grounds, asphalt, urethane, clay and wood. We use a fully coupled 3-D foot-shoe-ground interaction model and we construct the multi-layered composite ground models. Through the numerical simulation, the landing impact characteristics such as the ground reaction force (GRF), the acceleration transfer and the frequency response characteristics are investigated for four different sports grounds. It was found that the risk of injury, associated with the landing impact, was reduced as the ground material changes from asphalt to wood, from the fact that both the peak vertical acceleration and the central frequency monotonically decrease from asphalt to wood. As well, it was found that most of the impact acceleration and frequency was dissipated at the heel, then not much changed from the ankle to the knee.

Numerical simulation on jet breakup in the fuel-coolant interaction using smoothed particle hydrodynamics

  • Choi, Hae Yoon;Chae, Hoon;Kim, Eung Soo
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3264-3274
    • /
    • 2021
  • In a severe accident of light water reactor (LWR), molten core material (corium) can be released into the wet cavity, and a fuel-coolant interaction (FCI) can occur. The molten jet with high speed is broken and fragmented into small debris, which may cause a steam explosion or a molten core concrete interaction (MCCI). Since the premixing stage where the jet breakup occurs has a large impact on the severe accident progression, the understanding and evaluation of the jet breakup phenomenon are highly important. Therefore, in this study, the jet breakup simulations were performed using the Smoothed Particle Hydrodynamics (SPH) method which is a particle-based Lagrangian numerical method. For the multi-fluid system, the normalized density approach and improved surface tension model (CSF) were applied to the in-house SPH code (single GPU-based SOPHIA code) to improve the calculation accuracy at the interface of fluids. The jet breakup simulations were conducted in two cases: (1) jet breakup without structures, and (2) jet breakup with structures (control rod guide tubes). The penetration depth of the jet and jet breakup length were compared with those of the reference experiments, and these SPH simulation results are qualitatively and quantitatively consistent with the experiments.

Nonlinear Time-Domain Analysis of Underground Subway Structure Subjected to Seismic Loadings (지진하중에 대한 지하철구조물의 비선형 시간영역해석)

  • 김재민;이중건
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.09a
    • /
    • pp.163-170
    • /
    • 2001
  • This paper presents results of nonlinear analyses for underground structures including both the soil-structure interaction and nonlinear behavior of concrete material. For this purpose, a hybrid method is employed, in which a dynamic analysis technique for a linear soil-structure interaction system and a general purpose FE program are combined in hybrid and practical manners. A couple of nonlinear analyses are carried out for framed structures in multi-layered half space soil medium. The yielding of concrete structure is considered by a multi-linear stress- strain relationship. The numerical results suggest that ductile design fur the intermediate columns in the underground framed structure is substantially important in aseismic design.

  • PDF

Optimization of Cu CMP Process Parameter using DOE Method (DOE 방법을 이용한 Cu CMP 공정 변수의 최적화)

  • Choi, Min-Ho;Kim, Nam-Hoon;Kim, Sang-Yong;Chang, Eui-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.711-714
    • /
    • 2004
  • Chemical mechanical polishing (CMP) has been widely accepted for the global planarization of multi-layer structures in semiconductor manufacturing. However, it still has various problems to the CMP equipment, in particular, among the CMP components, process variables are very important parameters in determining the removal rate and non-uniformity. Using a design of experiment (DOE) approach, this study was performed investigating the interaction between the various parameters such as turntable and head speed, down force and back pressure during CMP. Using statistical analysis techniques, a better understanding of the interaction behavior between the various parameters and the effect on removal rate, no-uniformity and ETC (edge to center) is achieved.

  • PDF

A Study on Sapphire Wafer Scribing Using Picosecond Pulse laser (피코초 펄스 레이저를 이용한 사파이어 웨이퍼 스크라이빙에 관한 연구)

  • Moon, Jae-Won;Kim, To-Hoon
    • Laser Solutions
    • /
    • v.8 no.2
    • /
    • pp.7-12
    • /
    • 2005
  • The material processing of UV nanosecond pulse laser cannot be avoided the material shape change and contamination caused by interaction of base material and laser beam. Nowadays, ultra short pulse laser shorter than nanosecond pulse duration is used to overcome this problem. The advantages of this laser are no heat transfer, no splashing material, no left material to the adjacent material. Because of these characteristics, it is so suitable for micro material processing. The processing of sapphire wafer was done by UV 355nm, green 532nm, IR 1064nm. X-Y motorized stage is installed to investigate the proper laser beam irradiation speed and cycles. Also, laser beam fluence and peak power are calculated.

  • PDF

Natural frequency of bottom-fixed offshore wind turbines considering pile-soil-interaction with material uncertainties and scouring depth

  • Yi, Jin-Hak;Kim, Sun-Bin;Yoon, Gil-Lim;Andersen, Lars Vabbersgaard
    • Wind and Structures
    • /
    • v.21 no.6
    • /
    • pp.625-639
    • /
    • 2015
  • Monopiles have been most widely used for supporting offshore wind turbines (OWTs) in shallow water areas. However, multi-member lattice-type structures such as jackets and tripods are also considered good alternatives to monopile foundations for relatively deep water areas with depth ranging from 25-50 m owing to their technical and economic feasibility. Moreover, jacket structures have been popular in the oil and gas industry for a long time. However, several unsolved technical issues still persist in the utilization of multi-member lattice-type supporting structures for OWTs; these problems include pile-soil-interaction (PSI) effects, realization of dynamically stable designs to avoid resonances, and quick and safe installation in remote areas. In this study, the effects of PSI on the dynamic properties of bottom-fixed OWTs, including monopile-, tripod- and jacket-supported OWTs, were investigated intensively. The tower and substructure were modeled using conventional beam elements with added mass, and pile foundations were modeled with beam and nonlinear spring elements. The effects of PSI on the dynamic properties of the structure were evaluated using Monte Carlo simulation considering the load amplitude, scouring depth, and the uncertainties in soil properties.

An Investigation of Debris Configuration and Melt-Water Interaction in Steam Explosion Experiments using $ZrO_2$ (원자로 물질의 $ZrO_2$를 이용한 증기폭발 실험에서 용융물 거동 및 데브리의 분포)

  • Song, J.H.;Kim, H.D.;Hong, S.W.;Park, I.K.;Shin, Y.S.;Min, B.T.;Chang, Y.J.
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.57-62
    • /
    • 2001
  • Korea Atomic Energy Research Institute (KAERI) launched an intermediate scale steam explosion experiment named Test for Real cOrium Interaction with water (TROI) using reactor material to investigate whether the corium would lead to energetic steam explosion when interacted with cold water at low pressure. The melt-water interaction is confined in a pressure vessel with the multi-dimensional fuel and water pool geometry. The cold crucible technology, where the mixture of powder in a water-cooled cage is heated by high frequency induction, is employed. In this paper, results of the first series of tests ($TROI-1{\sim}5$) were discussed. The ZrO2 jets with 5kg mass and 5cm diameter were poured into the 67cm deep water pool at $30{\sim}95^{\circ}C$. Either spontaneous steam explosions or quenching was observed. The morphology of debris and pressure wave profiles clearly indicates the each case.

  • PDF