• Title/Summary/Keyword: Multi-machine control

Search Result 265, Processing Time 0.028 seconds

Coordinated Control of an Independent Multi-phase Permanent Magnet-type Transverse Flux Linear Machine Based on Magnetic Levitation

  • Hwang, Seon-Hwan;Kwon, Soon-Kurl;Hwang, Young-Gi;Bang, Deok-Je
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.12
    • /
    • pp.95-102
    • /
    • 2014
  • This paper proposes a coordinated control for an independent multi-phase transverse flux linear synchronous motor (IM-TFLSM) based on magnetic levitation. The stator structures of the IM-TFLSM are composed of a two set, which has independent three-phase windings and a double-sided air-gap as opposed to the conventional Y-connected three-phase linear motors. A suitable control algorithm is necessary to operate the applied linear machine. This study proposes a coordinated control algorithm for adjusting the mover air-gap and thrust force of the IM-TFLSM in order to maintain air-gap and phase shifted current control of the independent 3-phase modules. In addition, the principle of operation and its special structures are described in detail and the validity and effectiveness of the control algorithm is verified through multiple experimental results.

A Design Of Control System Satisfying Multi-Performance Specifications Using Adaptive Genetic Algorithms (적응 유전자 알고리즘을 이용한 다수의 성능 사양을 만족하는 제어계의 설계)

  • 윤영진;원태현;이영진;이만형
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.621-624
    • /
    • 2002
  • The purpose of this paper is a study on getting proper gain set of PID controller which satisfies multi-performance specifications of the control system. The multi-objective optimization method is introduced to evaluate specifications, and the genetic algorithm is used as an optimal problem solver. To enhance the performance of genetic algorithm itself, adaptive technique is included. According to the proposed method in this paper, finding suitable gain set can be more easily accomplishable than manual gain seeking and tuning.

  • PDF

Synchronous Control of Center Distributed Multi-Head Embroidery Machine Using Disturbance Observer (외란 관측기를 이용한 중앙 분산형 다두 자수기의 동기제어)

  • Jeong, Seung Hyun;Choi, Deuk-Sung;Park, Jung Il
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.11
    • /
    • pp.1015-1021
    • /
    • 2014
  • This paper proposes the center distributed embroidery machine structure with 1,500 RPM, 52 heads for productivity and large sized embroidery goods. The synchronous velocity controller is adopted for control of the 2-axis distributed embroidery machine and the DOB(Disturbance Observer) is also adopted for minimizing disturbances caused by needle cams. For driving experiments of 2-axis center distributed driving structure, two conventional 26 heads 1,500RPM embroidery machines are used. It was shown that the center distributed driving structure with 2-axis synchronous control can be one way for implementing a large embroidery machine.

A Novel Method for Virtual Machine Placement Based on Euclidean Distance

  • Liu, Shukun;Jia, Weijia
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.7
    • /
    • pp.2914-2935
    • /
    • 2016
  • With the increasing popularization of cloud computing, how to reduce physical energy consumption and increase resource utilization while maintaining system performance has become a research hotspot of virtual machine deployment in cloud platform. Although some related researches have been reported to solve this problem, most of them used the traditional heuristic algorithm based on greedy algorithm and only considered effect of single-dimensional resource (CPU or Memory) on energy consumption. With considerations to multi-dimensional resource utilization, this paper analyzed impact of multi-dimensional resources on energy consumption of cloud computation. A multi-dimensional resource constraint that could maintain normal system operation was proposed. Later, a novel virtual machine deployment method (NVMDM) based on improved particle swarm optimization (IPSO) and Euclidean distance was put forward. It deals with problems like how to generate the initial particle swarm through the improved first-fit algorithm based on resource constraint (IFFABRC), how to define measure standard of credibility of individual and global optimal solutions of particles by combining with Bayesian transform, and how to define fitness function of particle swarm according to the multi-dimensional resource constraint relationship. The proposed NVMDM was proved superior to existing heuristic algorithm in developing performances of physical machines. It could improve utilization of CPU, memory, disk and bandwidth effectively and control task execution time of users within the range of resource constraint.

Decentralized Nonlinear Voltage Control of Multi-machine Power Systems with Nonlinear Interconnections

  • Lee, Jae-Won;Yoon, Tae-Woong;Im, Sun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.448-453
    • /
    • 2004
  • In this paper, an adaptive robust decentralized excitation control scheme is proposed to enhance the transient stability of a multi-machine power system. We employ a state model where the terminal voltage of each generator is regarded as part of the state. Using this state model, the proposed controller is obtained in two steps: firstly, a robust controller is designed for the nominal system with no interconnection terms; then an adaptive compensator is proposed to deal with those interconnection terms, whose upper bounds are estimated. The resulting adaptive scheme guarantees the practical stability of the closed-loop, and also the uniform ultimate boundedness in the presence of disturbances.

  • PDF

Transient stability improvement using quasi-multi pulse BTB-STATCOM

  • Vural, Ahmel M.;Bayindi, Kamil C.
    • Advances in Energy Research
    • /
    • v.2 no.1
    • /
    • pp.47-59
    • /
    • 2014
  • Back-to-back STATCOM configuration is an extension of STATCOM in which the reactive power at two-sides and the real power flow through the DC link can be controlled concurrently and independently. This flexible operation brings many advantages to the micro-grids, distributed generation based systems, and deregulated power systems. In this paper, the dynamic control characteristics of the back-to-back STATCOM is investigated by simulating the detailed converter-level model of the converters in PSCAD. Various case studies in a single-machine test system are studied to present that the real power control feature of the BtB-STATCOM, even with a simple controller design, can enhance the transient stability of the machine under different fault scenarios.

A Study on the Control technique of the Real-Time over the Environment of Graphic User Interface Using VxD. (VxD를 이용한 GUI환경에서의 실시간 제어기법에 관한 연구)

  • 장성욱;이진걸
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.120-120
    • /
    • 2000
  • In this study, in order to control real system under the environment of graphic user interface, study on the technique which can control real system without additional hardware drivers using virtual machine driver operated on the windows operating system. Consider the problem which is the error and the delay of a sampling time on the multi task processing through the load test of the experiment using graphic user interface.

  • PDF

Study of Locking Algorithms for a On/Off Multi-plate Clutch (동력절환용 클러치의 기계식 잠금장치 체결 알고리즘에 대한 연구)

  • Su Chul Kim;Jae Seung Kim;Sanggon Moon;Geun Ho Lee
    • Journal of Drive and Control
    • /
    • v.21 no.1
    • /
    • pp.1-7
    • /
    • 2024
  • The locking performance of a multi-plate clutch with a mechanical lock-up system is governed by the engagement algorithm. In this paper, a control algorithm to improve the locking performance of the clutch was studied. A 1D dynamic model was constructed and simulated according to the developed algorithm. The developed algorithm was composed of a method in which the locking device is engaged while generating artificial slip on the friction plate by controlling the piston pressure of the clutch. Furthermore, a case study of the parameters within the developed algorithm was conducted to explore combinations that maximize locking performance and analyze trends according to these parameters.

A Machine Vision Algorithm for the Automatic Inspection of Inserts (인서트 자동검사를 위한 시각인식 알고리즘)

  • 이문규;신승호
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.6
    • /
    • pp.795-801
    • /
    • 1998
  • In this paper, we propose a machine vision algorithm for inspecting inserts which are used for milling and turning operations. Major defects of the inserts are breakage and crack on insert surfaces. Among the defects, breakages on the face of the inserts can be detected through three stages of the algorithm developed in this paper. In the first stage, a multi-layer perceptron is used to recognize the inserts being inspected. Edge detection of the insert image is performed in the second stage. Finally, in the third stage breakages on the insert face are identified using Hough transform. The overall algorithm is tested on real specimens and the results show that the algorithm works fairly well.

  • PDF

Development of Core Technologies of Multi-tasking Machine Tools for Machining Highly Precision Large Parts (고정밀 대형 부품가공용 복합가공기 원천기술 개발)

  • Jang, Sung-Hyun;Choi, Young-Hyu;Kim, Soo-Tae;An, Ho-Sang;Choi, Hag-Bong;Hong, Jong-Seung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.2
    • /
    • pp.129-138
    • /
    • 2012
  • In this study, three types of large scale multi-tasking machine tools together with core technologies involved have been developed and introduced; a multi-tasking machine tool for large scale marine engine crankshafts, a multi-tasking vertical lathe for windmill parts, and a large scale 5-axis machine tool of gantry type. Several special purpose devices has been necessarily developed for the purpose of handling and machining big and heavy workpieces accurately, such as PTD (Pin Turning Device) with revolving ring spindle for machining eccentric crankshaft pins, hydrostatic rotary table and steady rest for supporting and resting heavy workpieces, and 2-axis automatic swiveling head for high-quality free surface machining. Core technologies have been also developed and adopted on their detail design stage; 1) structural design optimization with FEM structural analysis, 2) theoretical hydrostatic analysis for the PTD and rotary table bearings, 3) box-in-box type cross-rail and octagonal ram design to secure machine rigidity and accuracy, 4) constant spindle rpm control against gravitational torque due to unbalanced workpiece.