• Title/Summary/Keyword: Multi-level power inverter

Search Result 157, Processing Time 0.035 seconds

A Novel Regenerative Snubber suitable to Multi-Level Inverters with Series-Connected GTOs (직렬 연결된 GTO로 구성된 멀티레벨 인버터에 적합한 새로운 회생 스너버에 관한 연구)

  • Chae, G.;Cho, Guk-C.;Jung, Gu-H.;Ryoo, Tae-H.;Cho, Gyu-H.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.585-587
    • /
    • 1996
  • A simple regenerative snubber structure is proposed, which is applicable to multi-level inverter with series-connected GTOs for high power applications. The novel snubber structure can solve large energy loss problems and guarantee safe operation of power converter can be achieved. The proposed new snubber has the potential of high performance and high reliability and is particularly suitable to high power and multi-level application with series connected power devices. The snubber voltage and current waveforms are analized and shown the simulation and experimental results for a GTO 3-level inverter circuit with inductive load.

  • PDF

Differential Power Processing System for the Capacitor Voltage Balancing of Cost-effective Photovoltaic Multi-level Inverters

  • Jeon, Young-Tae;Kim, Kyoung-Tak;Park, Joung-Hu
    • Journal of Power Electronics
    • /
    • v.17 no.4
    • /
    • pp.1037-1047
    • /
    • 2017
  • The Differential Power Processing (DPP) converter is a promising multi-module photovoltaic inverter architecture recently proposed for photovoltaic systems. In this paper, a DPP converter architecture, in which each PV-panel has its own DPP converter in shunt, performs distributed maximum power point tracking (DMPPT) control. It maintains a high energy conversion efficiency, even under partial shading conditions. The system architecture only deals with the power differences among the PV panels, which reduces the power capacity of the converters. Therefore, the DPP systems can easily overcome the conventional disadvantages of PCS such as centralized, string, and module integrated converter (MIC) topologies. Among the various types of the DPP systems, the feed-forward method has been selected for both its voltage balancing and power transfer to a modified H-bridge inverter that needs charge balancing of the input capacitors. The modified H-bridge multi-level inverter had some advantages such as a low part count and cost competitiveness when compared to conventional multi-level inverters. Therefore, it is frequently used in photovoltaic (PV) power conditioning system (PCS). However, its simplified switching network draws input current asymmetrically. Therefore, input capacitors in series suffer from a problem due to a charge imbalance. This paper validates the operating principle and feasibility of the proposed topology through the simulation and experimental results. They show that the input-capacitor voltages maintain the voltage balance with the PV MPPT control operating with a 140-W hardware prototype.

Multi-modulating Pattern - A Unified Carrier based PWM method In Multi-level Inverter - Part 2

  • Nho Nguyen Van;Youn Myung Joong
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.625-629
    • /
    • 2004
  • This paper presents a systematical approach to study carrier based PWM techniques (CPWM) in diode-clamped and cascade multilevel inverters by using a proposed named multi-modulating pattern method. This method is based on the vector correlation between CPWM and the space vector PWM (SVPWM) and applicable to both multilevel inverter topologies. A CPWM technique can be described in a general mathematical equation, and obtain the same outputs similarly as of the corresponding SVPWM. Control of the fundamental voltage, vector redundancies and phase redundancies in multilevel inverter can be formulated separately in the CPWM equation. The deduced CPWM can obtain the full vector redundancy control, and fully utilize phase redundancy in a cascade inverter In this continued part, it will be deduced correlation between CPWM equations in multi-carrier system and single carrier system, present the mathematical model of voltage source inverter related to the common mode voltage and propose a general algorithm for multi-modulating modulator. The obtained theory will be demonstrated by simulation results.

  • PDF

A Carrier-Rotation Strategy for Voltage Balancing of Flying Capacitors in Flying Capacitor Multi-level Inverter (플라잉 커패시터 멀티-레벨 인버터의 플라잉 커패시터 전압 균형을 위한 캐리어 로테이션 기법)

  • 이원교;김태진;강대욱;현동석
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.6
    • /
    • pp.469-477
    • /
    • 2003
  • This paper proposes a Carrier-Rotation (CR) PWM technique that is a new solution for the voltage unbalancing problem of flying capacitors in the Flying Capacitor Multi-level Inverter (FCMI). The proposed technique equalizes the utilization of phase leg voltage redundancies corresponding to the charging and the discharging state of individual flying capacitors during each switching period of all the switches. Therefore, the charging and the discharging quantity of flying capacitors are equal, which makes the average variation of flying capacitor voltages become zero and keeps their voltage stable during minimum specified period. It also has the reduced harmonic contents of output voltage and the same switch utilization since all the carrier signals are in phase and the switching frequency of each switch is identical. The proposed technique is analyzed precisely in flying capacitor 3-level inverter and then it has expanded to the FCMI (N-level, N>3). Experimental results on the laboratory prototype flying capacitor 3-level inverter confirm the validity of the proposed technique.

Simplified Space Vector PWM Method for Multi-level Inverters (멀티레벨 인버터를 위한 간략화된 공간 전압벡터 변조 방안)

  • Suh, Jae-Hyeong;Song, Young-Joo;Kim, Kwang-Seob;Lee, Chul-Goo;Bang, Sang-Seok;Choi, Chang-Ho;Hyun, Dong-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1998.07f
    • /
    • pp.1905-1907
    • /
    • 1998
  • The multi-level approach seems to be best suited to high power, high voltage ac drives with low torque ripple and fast dynamic response. If high control performance is required, space vector control becomes desirable, and the task becomes time critical. In this paper, a simplified space vector PWM method for the control of a three level inverter is proposed. As the PWM is simple in structure, it is easy to implement and the fluctuation of the neutral point potential of DC link can be supressed effectively. The simulation results demonstrate that the proposed PWM strategy can be applied to high power, high voltage inverter systems. And its application to multi-level inverter is easily done on the same principle.

  • PDF

A Hybrid Active Power Filter for Electric-Railway Systems using Multi-Level Inverters (멀티레벨 인버터를 이용한 전기철도용 하이브리드 능동전력필터)

  • Kim Yoon-Ho;Kim Soo-Hong;Rho Sung-Chan;Lee Kang-Hee
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.1334-1339
    • /
    • 2004
  • This paper proposes transformerless power conversion system consisting of a single-phase diode rectifier and a shunt hybrid filter for the electric-railway system. The hybrid filter consists of a single tuned LC filter per a phase and a low-rated NPC type multi-level inverter. Compared with conventional active filters. Transformers are not used. Also, LC filter works as not only a harmonic filter tuned at the 5th harmonic frequency but also a switching-ripple filter. The rating of the active filter can be decreased by using a NPC type multi-level inverter. The simulation results confirm the validity of the system.

  • PDF

A Hybrid Active Power Filter for Electric-Railway Systems using Multi-Level Inverters (멀티레벨 인버터를 이용한 전기철도용 하이브리드 능동전력필터)

  • Kim Yoon-Ho;Kim Soo-Hong;Rho Sung-Chan;Lee Kang-Hee
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.1427-1432
    • /
    • 2004
  • This paper proposes transformerless power conversion system consisting of a single-phase diode rectifier and a shunt hybrid filter for the electric-railway system. The hybrid filter consists of a single tuned LC filter per a phase and a low-rated NPC type multi-level inverter. Compared with conventional active filters. Transformers are not used. Also, LC filter works as not only a harmonic filter tuned at the 5th harmonic frequency but also a switching-ripple filter. The rating of the active filter can be decreased by using a NPC type multi-level inverter. The simulation results confirm the validity of the system

  • PDF

A Novel SVPWM Strategy Considering DC-link Balancing for a Multi-level Voltage Source Inverter

  • Kim, Rae-Young;Lee, Yo-Han;Hyun, Dong-Seok
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.159-164
    • /
    • 1998
  • This paper proposes a SVPWM (space vector pulse width modulation) strategy for a multi-level voltage source inverter. This strategy is easily implemented as SPWM (sinusoidal pulse width modulation) and has the same DC-link voltage utilization as general SVPWM. The method to keep the voltage balancing of DC-link also is proposed by the analysis model of DC-link voltage fluctuation. The usefulness of the proposed SVPWM is verified through the simulation.

  • PDF

New Double-Connected Multi-Step Inverter for SVC Applications (SVC적용을 위한 새로운 이중접속방식의 멀티스텝 인버터)

  • 양승욱;최세완;문건우;조정구
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.6
    • /
    • pp.547-553
    • /
    • 1999
  • A new multi-step voltage source inverter is proposed in this paper. The proposed scheme is composed of t the double-connected 12-step inverter with an auxiliary circuit. The auxiliary circuit includes two voltage d dividing capacitors, two switching devices and a low KV A autotransformer. The resultant system is shown to b be a 24-step inverter suitable for medium power level SVC applications in which the PWM method can not be e employed. A 36-step operation can also be 이)tained by the addition of a bidirectional switch to the ProlXlsed I inverter. The design parameters are derived from the analysis of voltages and currents by means of switching f functions. The validity of the proposed scheme is confirmed by the simulated and experimental results.

  • PDF