• Title/Summary/Keyword: Multi-level model

Search Result 1,071, Processing Time 0.026 seconds

3D Object Modeling and Feature Points using Octree Model (8진트리 모델을 사용한 3D 물체 모델링과 특징점)

  • 이영재
    • Journal of Korea Multimedia Society
    • /
    • v.5 no.5
    • /
    • pp.599-607
    • /
    • 2002
  • The octree model, a hierarchical volume description of 3D objects, nay be utilized to generate projected images from arbitrary viewing directions, thereby providing an efficient means of the data base for 3D object recognition and other applications. We present 2D projected image and made pseudo gray image of object using octree model and multi level boundary search algorithm. We present algorithm for finding feature points of 2D and 3D image and finding matched points using geometric transformation. The algorithm is made of data base, it will be widely applied to 3D object modeling and efficient feature points application for basic 3D object research.

  • PDF

A Study of SIL Allocation with a Multi-Phase Fuzzy Risk Graph Model (다단계 퍼지 리스크 그래프 모델을 적용한 SIL 할당에 관한 연구)

  • Yang, Heekap;Lee, Jongwoo
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.2
    • /
    • pp.170-186
    • /
    • 2016
  • This paper introduces a multi-phase fuzzy risk graph model, representing a method for determining for SIL values for railway industry systems. The purpose of this paper is to compensate for the shortcomings of qualitative determination, which are associated with input value ambiguity and the subjectivity problem of expert judgement. The multi-phase fuzzy risk graph model has two phases. The first involves the determination of the conventional risk graph input values of the consequence, exposure, avoidance and demand rates using fuzzy theory. For the first step of fuzzification this paper proposes detailed input parameters. The fuzzy inference and the defuzzification results from the first step will be utilized as input parameters for the second step of the fuzzy model. The second step is to determine the safety integrity level and tolerable hazard rate corresponding to be identified hazard in the railway industry. To validate the results of the proposed the multi-phase fuzzy risk graph, it is compared with the results of a safety analysis of a level crossing system in the CENELEC SC 9XA WG A0 report. This model will be adapted for determining safety requirements at the early concept design stages in the railway business.

Structural health rating (SHR)-oriented 3D multi-scale finite element modeling and analysis of Stonecutters Bridge

  • Li, X.F.;Ni, Y.Q.;Wong, K.Y.;Chan, K.W.Y.
    • Smart Structures and Systems
    • /
    • v.15 no.1
    • /
    • pp.99-117
    • /
    • 2015
  • The Stonecutters Bridge (SCB) in Hong Kong is the third-longest cable-stayed bridge in the world with a main span stretching 1,018 m between two 298 m high single-leg tapering composite towers. A Wind and Structural Health Monitoring System (WASHMS) is being implemented on SCB by the Highways Department of The Hong Kong SAR Government, and the SCB-WASHMS is composed of more than 1,300 sensors in 15 types. In order to establish a linkage between structural health monitoring and maintenance management, a Structural Health Rating System (SHRS) with relevant rating tools and indices is devised. On the basis of a 3D space frame finite element model (FEM) of SCB and model updating, this paper presents the development of an SHR-oriented 3D multi-scale FEM for the purpose of load-resistance analysis and damage evaluation in structural element level, including modeling, refinement and validation of the multi-scale FEM. The refined 3D structural segments at deck and towers are established in critical segment positions corresponding to maximum cable forces. The components in the critical segment region are modeled as a full 3D FEM and fitted into the 3D space frame FEM. The boundary conditions between beam and shell elements are performed conforming to equivalent stiffness, effective mass and compatibility of deformation. The 3D multi-scale FEM is verified by the in-situ measured dynamic characteristics and static response. A good agreement between the FEM and measurement results indicates that the 3D multi-scale FEM is precise and efficient for WASHMS and SHRS of SCB. In addition, stress distribution and concentration of the critical segments in the 3D multi-scale FEM under temperature loads, static wind loads and equivalent seismic loads are investigated. Stress concentration elements under equivalent seismic loads exist in the anchor zone in steel/concrete beam and the anchor plate edge in steel anchor box of the towers.

De-Centralized Information Flow Control for Cloud Virtual Machines with Blowfish Encryption Algorithm

  • Gurav, Yogesh B.;Patil, Bankat M.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.12
    • /
    • pp.235-247
    • /
    • 2021
  • Today, the cloud computing has become a major demand of many organizations. The major reason behind this expansion is due to its cloud's sharing infrastructure with higher computing efficiency, lower cost and higher fle3xibility. But, still the security is being a hurdle that blocks the success of the cloud computing platform. Therefore, a novel Multi-tenant Decentralized Information Flow Control (MT-DIFC) model is introduced in this research work. The proposed system will encapsulate four types of entities: (1) The central authority (CA), (2) The encryption proxy (EP), (3) Cloud server CS and (4) Multi-tenant Cloud virtual machines. Our contribution resides within the encryption proxy (EP). Initially, the trust level of all the users within each of the cloud is computed using the proposed two-stage trust computational model, wherein the user is categorized bas primary and secondary users. The primary and secondary users vary based on the application and data owner's preference. Based on the computed trust level, the access privilege is provided to the cloud users. In EP, the cipher text information flow security strategy is implemented using the blowfish encryption model. For the data encryption as well as decryption, the key generation is the crucial as well as the challenging part. In this research work, a new optimal key generation is carried out within the blowfish encryption Algorithm. In the blowfish encryption Algorithm, both the data encryption as well as decryption is accomplishment using the newly proposed optimal key. The proposed optimal key has been selected using a new Self Improved Cat and Mouse Based Optimizer (SI-CMBO), which has been an advanced version of the standard Cat and Mouse Based Optimizer. The proposed model is validated in terms of encryption time, decryption time, KPA attacks as well.

Determination of management water level for the storage and flood controls in the underflow type of multi-stage movable weir using artificial neural network (인공신경망을 이용한 다단 배치된 하단배출형 가동보의 저류 및 홍수 조절을 위한 관리수위 결정)

  • Lee, Ji Haeng;Han, Il Yeong;Choi, Heung Sik
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.2
    • /
    • pp.111-119
    • /
    • 2017
  • The underflow type movable weirs were arranged in a multi-stage way along a reach at the Chiseong River, where flooding has been observed frequently. With management water level of the movable weirs the control effects of storage and flood were suggested and the control effects were compared with those of existed weir system. The water level for the targeted storage and flood elevation was suggested by building the artificial neural network model. When the underflow type of movable weirs were arranged in a multi-stage way, the peak flood elevation decreased by 68.28% in the downstream compared with the existed weir system, and the total storage of the target section of multi-stage movable weirs increased by 216%. As a result of numerical simulation to build the artificial neural network model, 60%, 20%, and 20% among 216 data were used for the training, validation, and test, respectively. The training result of mean square error was $0.1681m^2$ and the high coefficients of determination were 0.9961, 0.9967, and 0.9943 in the training, validation, and test, respectively. As a result the water level management of each movable weir for the controls of flood elevation in the targeted downstream and targeted storage was suggested by using the artificial neural network.

Multi-modulating Pattern - A Unified Carrier based PWM method In Multi-level Inverter - Part 2

  • Nho Nguyen Van;Youn Myung Joong
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.625-629
    • /
    • 2004
  • This paper presents a systematical approach to study carrier based PWM techniques (CPWM) in diode-clamped and cascade multilevel inverters by using a proposed named multi-modulating pattern method. This method is based on the vector correlation between CPWM and the space vector PWM (SVPWM) and applicable to both multilevel inverter topologies. A CPWM technique can be described in a general mathematical equation, and obtain the same outputs similarly as of the corresponding SVPWM. Control of the fundamental voltage, vector redundancies and phase redundancies in multilevel inverter can be formulated separately in the CPWM equation. The deduced CPWM can obtain the full vector redundancy control, and fully utilize phase redundancy in a cascade inverter In this continued part, it will be deduced correlation between CPWM equations in multi-carrier system and single carrier system, present the mathematical model of voltage source inverter related to the common mode voltage and propose a general algorithm for multi-modulating modulator. The obtained theory will be demonstrated by simulation results.

  • PDF

Student-, School-, and ICT-Factors Predicting Computer-based Collaborative Problem Solving: Focusing on Analyses of Multi-level Models (컴퓨터 기반의 협력적 문제해결력 성취를 예측하는 학생과 학교 및 ICT 요인 : 다층모형 분석을 중심으로)

  • Lim, Hyo Jin;Lee, Soon Young
    • Journal of The Korean Association of Information Education
    • /
    • v.22 no.4
    • /
    • pp.457-471
    • /
    • 2018
  • This study examined student- and school-level background and ICT factors that affected PISA 2015 Collaborative Problem Solving (CPS) for Korean students (4863 students from 142 high schools). A two-level hierarchical linear model (HLM) was analyzed from the basic model (model 1) with no predictors to the final model (model 5) with all predictors. Results showed that first, gender, socioeconomic/cultural backgrounds, cooperation level positively predicted CPS scores while perceived unfairness of teacher negatively predicted the outcome. Second, the more frequently ICT was used for out-of-school learning purposes, the less frequently ICT was used for entertainment purposes, and the less frequently ICT was used in schools, the higher CPS scores were. Considering ICT autonomy and social interaction variables measured for the first time in PISA 2015, students who were more interested in ICT and more autonomous in using ICT devices achieved higher CPS scores. On the other hand, the more students considered ICT important as social interaction, the less they gained CPS scores. Third, in terms of school-level characteristics, the smaller the students behavior detrimental to learning, the higher the teachers perceived positive working environment, and the fewer the number of computers available per student, the higher CPS scores were. To facilitate computer-based collaborative problem-solving competence, it is important for students to have interest and autonomy in using ICT. In addition, the guidelines of ICT use and SW curriculum need to be established in order to increase the effectiveness of using ICT device in school.

On Thermal and State-of-Charge Balancing using Cascaded Multi-level Converters

  • Altaf, Faisal;Johannesson, Lars;Egardt, Bo
    • Journal of Power Electronics
    • /
    • v.13 no.4
    • /
    • pp.569-583
    • /
    • 2013
  • In this study, the simultaneous use of a multi-level converter (MLC) as a DC-motor drive and as an active battery cell balancer is investigated. MLCs allow each battery cell in a battery pack to be independently switched on and off, thereby enabling the potential non-uniform use of battery cells. By exploiting this property and the brake regeneration phases in the drive cycle, MLCs can balance both the state of charge (SoC) and temperature differences between cells, which are two known causes of battery wear, even without reciprocating the coolant flow inside the pack. The optimal control policy (OP) that considers both battery pack temperature and SoC dynamics is studied in detail based on the assumption that information on the state of each cell, the schedule of reciprocating air flow and the future driving profile are perfectly known. Results show that OP provides significant reductions in temperature and in SoC deviations compared with the uniform use of all cells even with uni-directional coolant flow. Thus, reciprocating coolant flow is a redundant function for a MLC-based cell balancer. A specific contribution of this paper is the derivation of a state-space electro-thermal model of a battery submodule for both uni-directional and reciprocating coolant flows under the switching action of MLC, resulting in OP being derived by the solution of a convex optimization problem.

Spatio-temporal Load Forecasting Considering Aggregation Features of Electricity Cells and Uncertainties in Input Variables

  • Zhao, Teng;Zhang, Yan;Chen, Haibo
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.38-50
    • /
    • 2018
  • Spatio-temporal load forecasting (STLF) is a foundation for building the prediction-based power map, which could be a useful tool for the visualization and tendency assessment of urban energy application. Constructing one point-forecasting model for each electricity cell in the geographic space is possible; however, it is unadvisable and insufficient, considering the aggregation features of electricity cells and uncertainties in input variables. This paper presents a new STLF method, with a data-driven framework consisting of 3 subroutines: multi-level clustering of cells considering their aggregation features, load regression for each category of cells based on SLS-SVRNs (sparse least squares support vector regression networks), and interval forecasting of spatio-temporal load with sampled blind number. Take some area in Pudong, Shanghai as the region of study. Results of multi-level clustering show that electricity cells in the same category are clustered in geographic space to some extent, which reveals the spatial aggregation feature of cells. For cellular load regression, a comparison has been made with 3 other forecasting methods, indicating the higher accuracy of the proposed method in point-forecasting of spatio-temporal load. Furthermore, results of interval load forecasting demonstrate that the proposed prediction-interval construction method can effectively convey the uncertainties in input variables.

A Heuristic Algorithm for Resource-Constrained Multi - Project Scheduling (자원제약하의 복수 프로젝트 일정계획을 위한 휴리스틱 알고리즘)

  • Kong, Myung-Dal;Kim, Jung-Ja
    • IE interfaces
    • /
    • v.13 no.1
    • /
    • pp.110-119
    • /
    • 2000
  • Resource-constrained project scheduling is to allocate limited resources to activities to optimize certain objective functions and to determine a start time for each activity in the project such that precedence constraints and resource requirements are satisfied. This study suggests a multi-project scheduling model which can level work loads, make the most of production capacity and restrain the delay of delivery by developing a heuristic algorithm which minimizes the project completion time and maximizes the load rate under resource constraints.

  • PDF