• Title/Summary/Keyword: Multi-level Poisson Model

Search Result 5, Processing Time 0.018 seconds

A MULTI-SERVER RETRIAL QUEUEING MODEL WITH POISSON SIGNALS

  • CHAKRAVARTHY, SRINIVAS R.
    • Journal of applied mathematics & informatics
    • /
    • v.39 no.5_6
    • /
    • pp.601-616
    • /
    • 2021
  • Retrial queueing models have been studied extensively in the literature. These have many practical applications, especially in service sectors. However, retrial queueing models have their own limitations. Typically, analyzing such models involve level-dependent quasi-birth-and-death processes, and hence some form of a truncation or an approximate method or simulation approach is needed to study in steady-state. Secondly, in general, the customers are not served on a first-come-first-served basis. The latter is the case when a new arrival may find a free server while prior arrivals are waiting in the retrial orbit due to the servers being busy during their arrivals. In this paper, we take a different approach to the study of multi-server retrial queues in which the signals are generated in such a way to provide a reasonably fair treatment to all the customers seeking service. Further, this approach makes the study to be level-independent quasi-birth-and-death process. This approach is different from any considered in the literature. Using matrix-analytic methods we analyze MAP/M/c-type retrial queueing models along with Poisson signals in steady-state. Illustrative numerical examples including a comparison with previously published retrial queues are presented and they show marked improvements in providing a quality of service to the customers.

A Study on Categorizing the Types of Transit Accessibility by Residence and Working Place and Identifying its Association to Personal Transit Travel Frequency (주거와 직장의 대중교통 접근성 유형화와 대중교통 통행발생량과의 연관성에 관한 연구)

  • Sung, Hyungun
    • Journal of Korean Society of Transportation
    • /
    • v.31 no.2
    • /
    • pp.20-32
    • /
    • 2013
  • This study is aimed at identifying the relationship of transit accessibility types to its related travel frequency in the Seoul metropolitan area. A multi-level poisson regression model is employed after categorizing transit accessibility into 18 types based on locations of residential and work workplace. Analysis results offer three policy implications in improving transit use in the Seoul metropolitan area. First, increase in transit ridership can be more effectively attained when policies concerning both competitive and complementary relationships between bus and rail transit are incorporated. Second, transfer system needs to be focused on such two modal perspectives as one travels from Seoul to suburban area and residential areas given the fact that walking accessibility to bus transit is good but that to rail transit is poor. Third, it is more effective to emphasize rail transit priority rather than bus transit, especially for the travel from suburban area to the city of Seoul in order to increase transit ridership.

Development of a Accident Frequency Prediction Model at Rural Multi-Lane Highways (지방부 다차로 도로구간에서의 사고 예측모형 개발 (대도시권 외곽 및 구릉지 특성의 도로구간 중심으로))

  • Lee, Dong-Min;Kim, Do-Hun;Seong, Nak-Mun
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.4
    • /
    • pp.207-215
    • /
    • 2009
  • Generally, traffic accidents can be influenced by variables driving conditions including geometric, roadside design, and traffic conditions. Under the circumstance, homogeneous roadway segments were firstly identified using typical geometric variables obtained from field data collections in this study. These field data collections were conducted at highways located in several areas having various regional conditions for examples, outside metropolitan city; level and rolling rural areas. Due to many zero cells in crash database, a Zero Inflated Poisson model was used to develop crash prediction model to overestimated results in this study. It was found that EXPO, radius, grade, guardrail, mountainous terrain, crosswalk and bus-stop have statistically significant influence on vehicle to vehicle crashes at rural multi-lane roadway segments.

Analysis of the effect of emergency lateral transshipment on a multi-echelon inventory model in SCM Environment (SCM 환경의 다단계 재고모형에서 긴급상호대차의 효과에 관한 연구)

  • Sung Chang Sup;Kim Julie;Jung Su Jin
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2002.05a
    • /
    • pp.742-749
    • /
    • 2002
  • This paper deals with a continuous-review two-echelon inventory model with one-for-one replenishment and Poisson demand where transshipments among retailers are allowed. Two classes of inventory systems are considered by the number of distribution centers(DCs) which provide each retailor with inventory items. 1:N class inventory system and M:N class inventory system respectively. Two-phase model is constructed to find out the optimal inventory positions which minimize supply chain costs. Approximations for customer service levels of the system are evaluated in the first phase, and the optimal inventory positions are found subject to the constraints for service level in the second phase. Simulation tests are performed to assure the effectiveness of the proposed model. The effect of transshipment is evaluated.

  • PDF

Modeling and SINR Analysis of Dual Connectivity in Downlink Heterogeneous Cellular Networks

  • Wang, Xianling;Xiao, Min;Zhang, Hongyi;Song, Sida
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.11
    • /
    • pp.5301-5323
    • /
    • 2017
  • Small cell deployment offers a low-cost solution for the boosted traffic demand in heterogeneous cellular networks (HCNs). Besides improved spatial spectrum efficiency and energy efficiency, future HCNs are also featured with the trend of network architecture convergence and feasibility for flexible mobile applications. To achieve these goals, dual connectivity (DC) is playing a more and more important role to support control/user-plane splitting, which enables maintaining fixed control channel connections for reliability. In this paper, we develop a tractable framework for the downlink SINR analysis of DC assisted HCN. Based on stochastic geometry model, the data-control joint coverage probabilities under multi-frequency and single-frequency tiering are derived, which involve quick integrals and admit simple closed-forms in special cases. Monte Carlo simulations confirm the accuracy of the expressions. It is observed that the increase in mobility robustness of DC is at the price of control channel SINR degradation. This degradation severely worsens the joint coverage performance under single-frequency tiering, proving multi-frequency tiering a more feasible networking scheme to utilize the advantage of DC effectively. Moreover, the joint coverage probability can be maximized by adjusting the density ratio of small cell and macro cell eNBs under multi-frequency tiering, though changing cell association bias has little impact on the level of the maximal coverage performance.