• Title/Summary/Keyword: Multi-level Optimization

Search Result 271, Processing Time 0.032 seconds

Optimal Design of a Novel Permanent Magnetic Actuator using Evolutionary Strategy Algorithm and Kriging Meta-model

  • Hong, Seung-Ki;Ro, Jong-Suk;Jung, Hyun-Kyo
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.471-477
    • /
    • 2014
  • The novel permanent magnetic actuator (PMA) and its optimal design method were proposed in this paper. The proposed PMA is referred to as the separated permanent magnetic actuator (SPMA) and significantly superior in terms of its cost and performance level over a conventional PMA. The proposed optimal design method uses the evolutionary strategy algorithm (ESA), the kriging meta-model (KMM), and the multi-step optimization. The KMM can compensate the slow convergence of the ESA. The proposed multi-step optimization process, which separates the independent variables, can decrease time and increase the reliability for the optimal design result. Briefly, the optimization time and the poor reliability of the optimum are mitigated by the proposed optimization method.

On Thermal and State-of-Charge Balancing using Cascaded Multi-level Converters

  • Altaf, Faisal;Johannesson, Lars;Egardt, Bo
    • Journal of Power Electronics
    • /
    • v.13 no.4
    • /
    • pp.569-583
    • /
    • 2013
  • In this study, the simultaneous use of a multi-level converter (MLC) as a DC-motor drive and as an active battery cell balancer is investigated. MLCs allow each battery cell in a battery pack to be independently switched on and off, thereby enabling the potential non-uniform use of battery cells. By exploiting this property and the brake regeneration phases in the drive cycle, MLCs can balance both the state of charge (SoC) and temperature differences between cells, which are two known causes of battery wear, even without reciprocating the coolant flow inside the pack. The optimal control policy (OP) that considers both battery pack temperature and SoC dynamics is studied in detail based on the assumption that information on the state of each cell, the schedule of reciprocating air flow and the future driving profile are perfectly known. Results show that OP provides significant reductions in temperature and in SoC deviations compared with the uniform use of all cells even with uni-directional coolant flow. Thus, reciprocating coolant flow is a redundant function for a MLC-based cell balancer. A specific contribution of this paper is the derivation of a state-space electro-thermal model of a battery submodule for both uni-directional and reciprocating coolant flows under the switching action of MLC, resulting in OP being derived by the solution of a convex optimization problem.

Multi-Objective Pareto Optimization of Parallel Synthesis of Embedded Computer Systems

  • Drabowski, Mieczyslaw
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.3
    • /
    • pp.304-310
    • /
    • 2021
  • The paper presents problems of optimization of the synthesis of embedded systems, in particular Pareto optimization. The model of such a system for its design for high-level of abstract is based on the classic approach known from the theory of task scheduling, but it is significantly extended, among others, by the characteristics of tasks and resources as well as additional criteria of optimal system in scope structure and operation. The metaheuristic algorithm operating according to this model introduces a new approach to system synthesis, in which parallelism of task scheduling and resources partition is applied. An algorithm based on a genetic approach with simulated annealing and Boltzmann tournaments, avoids local minima and generates optimized solutions. Such a synthesis is based on the implementation of task scheduling, resources identification and partition, allocation of tasks and resources and ultimately on the optimization of the designed system in accordance with the optimization criteria regarding cost of implementation, execution speed of processes and energy consumption by the system during operation. This paper presents examples and results for multi-criteria optimization, based on calculations for specifying non-dominated solutions and indicating a subset of Pareto solutions in the space of all solutions.

Robust multi-objective optimization of STMD device to mitigate buildings vibrations

  • Pourzeynali, Saeid;Salimi, Shide;Yousefisefat, Meysam;Kalesar, Houshyar Eimani
    • Earthquakes and Structures
    • /
    • v.11 no.2
    • /
    • pp.347-369
    • /
    • 2016
  • The main objective of this paper is the robust multi-objective optimization design of semi-active tuned mass damper (STMD) system using genetic algorithms and fuzzy logic. For optimal design of this system, it is required that the uncertainties which may exist in the system be taken into account. This consideration is performed through the robust design optimization (RDO) procedure. To evaluate the optimal values of the design parameters, three non-commensurable objective functions namely: normalized values of the maximum displacement, velocity, and acceleration of each story level are considered to minimize simultaneously. For this purpose, a fast and elitist non-dominated sorting genetic algorithm (NSGA-II) approach is used to find a set of Pareto-optimal solutions. The torsional effects due to irregularities of the building and/or unsymmetrical placements of the dampers are taken into account through the 3-D modeling of the building. Finally, the comparison of the results shows that the probabilistic robust STMD system is capable of providing a reduction of about 52%, 42.5%, and 37.24% on the maximum displacement, velocity, and acceleration of the building top story, respectively.

Low-latency SAO Architecture and its SIMD Optimization for HEVC Decoder

  • Kim, Yong-Hwan;Kim, Dong-Hyeok;Yi, Joo-Young;Kim, Je-Woo
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.3 no.1
    • /
    • pp.1-9
    • /
    • 2014
  • This paper proposes a low-latency Sample Adaptive Offset filter (SAO) architecture and its Single Instruction Multiple Data (SIMD) optimization scheme to achieve fast High Efficiency Video Coding (HEVC) decoding in a multi-core environment. According to the HEVC standard and its Test Model (HM), SAO operation is performed only at the picture level. Most realtime decoders, however, execute their sub-modules on a Coding Tree Unit (CTU) basis to reduce the latency and memory bandwidth. The proposed low-latency SAO architecture has the following advantages over picture-based SAO: 1) significantly less memory requirements, and 2) low-latency property enabling efficient pipelined multi-core decoding. In addition, SIMD optimization of SAO filtering can reduce the SAO filtering time significantly. The simulation results showed that the proposed low-latency SAO architecture with significantly less memory usage, produces a similar decoding time as a picture-based SAO in single-core decoding. Furthermore, the SIMD optimization scheme reduces the SAO filtering time by approximately 509% and increases the total decoding speed by approximately 7% compared to the existing look-up table approach of HM.

Optimization Design of Log-periodic Dipole Antenna Arrays Via Multiobjective Genetic Algorithms

  • Wang, H.J.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1353-1355
    • /
    • 2003
  • Genetic algorithms (GA) is a well known technique that is capable of handling multiobjective functions and discrete constraints in the process of numerical optimization. Together with the Pareto ranking scheme, more than one possible solution can be obtained despite the imposed constraints and multi-criteria design functions. In view of this unique capability, the design of the log-periodic dipole antenna array (LPDA) using this special feature is proposed in this paper. This method also provides gain, front-back level and S parameter design tradeoff for the LPDA design in broadband application at no extra computational cost.

  • PDF

A Production Planning Algorithm for a Supply Chain Network Considering Bark-Order and Resource Capacity Using GRASP Method (GRASP 기법을 이용한 주문이월과 자원제약을 고려한 공급사슬 망에서의 생산계획 알고리즘)

  • Shin, Hyun-Joon;Lee, Young-Sup
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.32 no.3
    • /
    • pp.29-39
    • /
    • 2009
  • In an environment of global competition, the success of a manufacturing corporation is directly related to how it plans and executes production in particular as well as to the optimization level of its process in general. This paper proposes a production planning algorithm for the Multi-Level, multi-item Capacitated Lot Sizing Problem (MLCLSP) in supply chain network considering back-order. MLCLSP corresponds to a mixed integer programming (MIP) problem and is NP-hard. Therefore, this paper proposes an effective algorithm, GRHS (GRASP-based Rolling Horizon Search) that solves this problem within reasonable computational time and evaluates its performance under a variety of problem scenarios.

An Improved Multi-level Optimization Algorithm for Orthotropic Steel Deck Bridges (강바닥판교의 개선된 다단계 최적설계 알고리즘)

  • 조효남;이광민;최영민;김정호
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.3
    • /
    • pp.237-250
    • /
    • 2003
  • Since an orthotropic steel deck bridge has large number of design variables and shows complex structural behavior, it would be very difficult and impractical to directly use a Conventional Single Level (CSL) optimization algorithm for its optimum design. Thus, in this paper, an Improved Multi Level Design Synthesis (IMLDS) optimization algorithm is proposed to improve the computational efficiency. In the proposed IMLDS algorithm, a coordination method is introduced to divide the bridge into main girders and orthotropic steel deck with preserving the characteristics of the structural behavior. For an efficient optimization of the bridge, the IMLDS algorithm incorporates the various crucial approximation techniques such as constraints deletion, Automatic Differentiation (AD), stress reanalysis, and etc. In the case of orthotropic steel deck system, optimum design problems are characterized by mixed continuous discrete variables and discontinuous design space. Thus, a modified Genetic Algorithm (GA) is also applied to optimize discrete member design for orthotropic steel deck. From the numerical example, the efficiency and convergency of the IMLDS algorithm proposed in this paper is investigated. It may be positively stated that the IMLDS algorithm will lead to more effective and practical design compared with previous algorithms.

Storage Allocation in Multi-level VOD Network Using Dynamic Programming (동적계획법을 이용한 다계층 VOD 망의 저장량 결정)

  • Kim, Yeo-Keun;Cho, Myoung-Rai;Kim, Jae-Yun
    • IE interfaces
    • /
    • v.9 no.3
    • /
    • pp.202-213
    • /
    • 1996
  • Video-on-demand is an interactive service that provides programs (movie, home shopping, etc.) to users connected to a network. This service will require high bandwidth network and video servers with a large amount of storage capacity. From the viewpoint of system analysis, there are optimization problems to be solved. In this paper, we present a dynamic programming method for allocating the storage for programs being served in a multi-level video-on-demand network. In the optimization of the network resource, we consider the three kinds of costs: installation cost for video servers, program storage cost, and transmission (or communication) cost. The factors related to the costs are investigated. An example is shown to illustrate the proposed method.

  • PDF

Development of optimization model for booster chlorination in water supply system using multi-objective optimization method (다목적 최적화기법을 활용한 상수도 공급계통 잔류염소농도 최적운영 모델 개발)

  • Kim, Kibum;Seo, Jeewon;Hyung, Jinseok;Kim, Taehyeon;Choi, Taeho;Koo, Jayong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.5
    • /
    • pp.311-321
    • /
    • 2020
  • In this study, a model to optimize residual chlorine concentrations in a water supply system was developed using a multi-objective genetic algorithm. Moreover, to quantify the effects of optimized residual chlorine concentration management and to consider customer service requirements, this study developed indices to quantify the spatial and temporal distributions of residual chlorine concentration. Based on the results, the most economical operational method to manage booster chlorination was derived, which would supply water that satisfies the service level required by consumers, as well as the cost-effectiveness and operation requirements relevant to the service providers. A simulation model was then created based on an actual water supply system (i.e., the Multi-regional Water Supply W in Korea). Simulated optimizations were successful, evidencing that it is possible to meet the residual chlorine concentration demanded by consumers at a low cost.